


Nuclear Safety Institute of the Russian Academy of Sciences

Gauge Approach  
and Quantization Methods 

in Gravity Theory

Vladimir N. Ponomarev
Andrei O. Barvinsky

Yuri N. Obukhov



УДК	530.12
ББК	 22.31
	 П56

Gauge approach and quantization methods in gravity theory / Ponomarev V. N., Barvinsky A. O.,  
Obukhov Yu.  N. ; Nuclear Safety Institute of the Russian Academy of Sciences  — М. : Nauka,  
2017. — 360 p. : ill. — ISBN 978-5-02-040047-4 (bound).
The book gives an overview of the geometrical gauge approach to the gravity theory and the methods 
of quantization of the gravitational field. Gauge-theoretic formalism (universal principle of the local 
invariance and the mechanism of spontaneous breaking of the gauge symmetry) forms the basis for 
the modern understanding of fundamental physical interactions and is successfully confirmed by the 
experimental discoveries of the gauge bosons and the Higgs particle. The carefully selected material 
of the book provides a minimal but sufficient mathematical introduction to the methods of the gauge 
gravitational theory, and gives a concise but exhaustive description of all specific physical consequences. 
In order to describe the many dramatic changes which took place recently in understanding the 
concepts, issues and motivations of quantum gravitational physics, a special emphasis is put on a 
comparison of three different quantization methods of the gravitational field – the covariant approach, 
the Dirac-Wheeler-DeWitt quantization and the method of Arnowitt-Deser-Misner. The basics of the 
canonical quantization is explained along with the detailed exposition of the path integral approach, 
and the introduction to the modern BRST technique is given to demonstrate the consistency of the 
Arnowitt-Deser-Misner and the Dirac-Wheeler-DeWitt quantization schemes. 
The book addresses the physicists who specialize in the gravity theory and the high-energy physics, 
and it can be recommended to the graduate students and senior undergraduate university students in 
theoretical physics and mathematics. 

Калибровочный подход и методы квантования в теории гравитации /  
Пономарев В. Н., Барвинский А. О., Обухов Ю. Н. ; Институт проблем безопасного развития 
атомной энергетики РАН — M. : Наука, 2017. — 360 с. : ил. — ISBN 978-5-02-040047-4 (в пер.).
Формализм калибровочной теории (универсальный принцип локальной инвариантности и 
механизм спонтанного нарушения калибровочной симметрии) лежит в основе современного 
понимания фундаментальных физических взаимодействий и успешно подтверждается экспе-
риментальными открытиями калибровочных бозонов и частицы Хиггса. В книге дается обзор 
геометрического калибровочного подхода к теории гравитации и методов квантования гравита-
ционного поля. Тщательно подобранный материал книги обеспечивает минимальное, но доста-
точное математическое введение в методы калибровочной теории гравитации и дает краткое, но 
исчерпывающее описание конкретных физических следствий калибровочного подхода. Чтобы 
осветить многочисленные драматические изменения, произошедшие в последнее время в осмы-
слении понятий, проблем и целей квантово-гравитационной физики, особое внимание уделя-
ется сравнению трех различных методов квантования гравитационного поля – ковариантного 
подхода, квантования Дирака-Уилера-ДеВитта и метода Арновитта-Дезера-Мизнера. В книге 
объясняются основы канонического квантования наряду с подробным изложением формализ-
ма континуальных интегралов, и дается введение в современную технику БРСТ, с тем чтобы 
продемонстрировать согласованность схем квантования Арновитта-Дезера-Мизнера и Дирака-
Уилера-ДеВитта. 
Книга адресована физикам, которые специализируются в теории гравитации и физике высоких 
энергий, и ее можно рекомендовать аспирантам и студентам старших курсов по теоретической 
физике и математике.

	

ISBN 978-5-02-040047-4	 © Ponomarev V. N., Barvinsky A. O., Obukhov Yu. N., 2017 
	 © Nuclear Safety Institute of the Russian Academy of Sciences, 2017
	 © Design and Layout. Publishing House «Nauka», 2017

Рецензенты:
доктор физико-математических наук, профессор В.Ч. Жуковский,

доктор физико-математических наук, профессор П.С. Кондратенко 



Preface viii

1	 Lagrangian description of gravity theories  
of Hilbert-Einstein type	 1
1.1.	 Geometrical spacetime structures....................................................................... 1
1.2.	 Hilbert variational principle and field equations  

of the general relativity......................................................................................... 8
1.3.	 First-order formalism and field equations  

of the Einstein-Cartan theory ........................................................................... 11

2	 Canonical formalism of gravity theories	 17
2.1.	 Systems with singular Lagrangians................................................................... 17
2.2.	 Peculiarities of the canonical formalism  

in curved spacetime............................................................................................ 30
2.3.	 Geometry of (3 + 1)-decomposition of spacetime.......................................... 31
2.4.	 Canonical formalism for the fields  

on the curved spacetime..................................................................................... 34

3	 Dynamics of gravity theories of Hilbert-Einstein type	 45
3.1.	 The problem of the “frozen” formalism............................................................ 45
3.2.	 Arnowitt-Deser-Misner procedure of selection  

of physical degrees of freedom.......................................................................... 46
3.3.	 Asymptotically flat and closed worlds.............................................................. 49

4	 Torsion effects on the structure and evolution  
of gravitating systems	 57
4.1.	 Matter fields in the Einstein-Cartan theory..................................................... 57
4.2.	 Conformal invariance and spacetime torsion................................................  71
4.3.	 Pre-Friedman stage of Universe’s evolution  

and spacetime torsion........................................................................................  74
4.4.	 Production of scalar particles  

by cosmological torsion field............................................................................  80

Contents



5	 Kinematics of gauge theories of gravity	 87
5.1.	 Special aspects of gauge approach in gravitation............................................ 87
5.2.	 Bundle of frames and generalized  

affine connection................................................................................................. 89
5.3.	 Spontaneous symmetry breaking  

and non-linear realizations................................................................................ 97
5.4.	 Kinematics of the gauge gravity theory..........................................................100

6	 Gauge gravity models with dynamical (Г-S)-interaction 	 107
6.1.	 Principles for construction of dynamics........................................................107
6.2.	 Choice of the action in the gauge gravity theory..........................................109
6.3.	 Physical consequences of the gauge gravity theory......................................114
6.4.	 Model description of microscopic gravitational  

interactions.........................................................................................................121

7	 Quantization of gravity	 129
7.1.	 Methods of quantum gravity .........................................................................  129
7.2.	 Arnowitt-Deser-Misner quantization method..............................................133
7.3.	 Dirac-Wheeler-DeWitt quantum geometrodynamics.................................138
7.4.	 Dirac quantization from  

Batalin-Fradkin-Vilkovisky formalism.........................................................  142
7.5.	 Semiclassical approximation............................................................................152
7.6.	 Problems and prospects of quantum gravity and cosmology.....................160

Appendices	 163
A1.	 Geometry of manifolds.....................................................................................163
A2.	 Spinor analysis on an arbitrary manifold......................................................  169
A3.	 Basic notations...................................................................................................173
A4.	 Comments on the literature and general remarks........................................174

References	 179 

Subject index	 197 

Bibliography on gauge gravity theory	 201

ivContents



VLADIMIR N. PONOMAREV

Vladimir Ponomarev was born in Moscow in 1945. He has stud-
ied physics at the Moscow State Lomonosov University and at the 
Warsaw University. His first scientific adviser was Andrzej Trau-
tman, who supervised his internship at the Institute of Theoreti-
cal Physics of the Warsaw University in 1969-72. After defending 
his PhD thesis (scientific advisors: Andrzej Trautman and Dmitry 
Ivanenko) in 1974, he worked at the Department of Theoretical 
Physics at Moscow State Lomonosov University till 1982, when 
he was elected as the head of the Department of Physics for Natu-
ral Sciences of the Moscow State Pedagogical University. In 1985, 
he was awarded the title of full professor. In 1988, he took part in 
the organization of the Nuclear Safety Institute, where he became 
the deputy director. He published about 150 scientific papers on 
the classical and quantum theory of gravity, as well as coauthored 
the monograph “Geometrodynamical methods and the gauge ap-
proach in the theory of gravitational interactions” (1985, Moscow) 
together with A.O. Barvinsky and Yu.N. Obukhov. During the pe-
riod of 1991-2009, he was involved in the work on social-economic 
transformations within the former USSR, including the service in 
the Government of the Russian Federation as a Deputy Minister. 
In 2009, he resumed the work in the Nuclear Safety Institute as the 
Deputy Director for Strategic Development and Innovations, along 
with continuing the activities in expert groups under the Govern-
ment and Parliament of the Russian Federation. Throughout his 
50-year professional career, he has been active in teaching, also in 
the recent times as an invited professor at several universities and 
academic institutions, including the Moscow Physical-Technical 
University.



ANDREI O. BARVINSKY

Andrei Barvinsky was born in 1955. After graduating from 
the Physics Department of Moscow State University he has 
got his PhD in theoretical physics in the field of quantum 
gravity theory and held a postdoctoral fellowship at the Uni-
versity of Alberta, Canada. Since then he is a leading scientific 
researcher at the Theory Department of the Lebedev Physics 
Institute of the Russian Academy of Sciences. The areas of his 
scientific interests are quantum field theory, quantum gravity 
and cosmology. In these areas he has more than one hundred 
publications including the pioneering contributions to the 
quantum theory of gauge constrained systems, background 
formalism and the effective action method in quantum field 
theory and Higgs inflation theory in cosmology of the very 
early quantum Universe. His teaching activity included su-
pervision of many PhD students and professorship at the 
Ludwig-Maximillian University in Munich, Germany. He has 
an ongoing wide scientific collaboration with the physicists 
of the Landau Institute for Theoretical Physics, the Physics 
Department of the Ludwig-Maximillian University in Mu-
nich, University of Cologne, Department of Physics and As-
tronomy of the University of British Columbia, the University 
of Bologna and the Theory Division of CERN. He is also one 
of the organizers of the long series of the Sakharov and Ginz-
burg conferences on physics held for more than twenty years 
at the Theory Department  of the Lebedev Physics Institute in 
Moscow.



YURI N. OBUKHOV

Yuri Obukhov was born in Berlin in 1956 and graduated from 
the Department of Physics of the Moscow State Lomonosov 
University. He received the PhD doctoral degree in 1983 from 
the Moscow State University, where he later worked for many 
years. He spent the first post-doctoral term in 1986-87 in the 
relativity group of A. Trautman at the Institute of Theoreti-
cal Physics of the Warsaw University. After he was awarded a 
Humboldt Fellowship and visited the University of Cologne in 
1992-94, a long and fruitful collaboration with Friedrich Hehl 
has started, and subsequently Yuri Obukhov has held several 
times research positions at the Institute for Theoretical Phys-
ics of the University of Cologne. He was also twice (2002 and 
2006) a visiting professor at the Institute for Theoretical Phys-
ics of the University of Sao Paulo (UNESP), and a research fel-
low at the Mathematics Department of the University College 
London (2009-2011). Since 2013 he is a senior scientist at the 
Nuclear Safety Institute of the Russian Academy of Sciences. 
Along with research, Yuri Obukhov took part in educational 
activities, teaching at different universities the lecture courses 
on classical and quantum field theory, classical gravity theory, 
relativistic cosmology, and supervising numerous master and 
PhD students. The scientific interests of Yuri Obukhov encom-
pass the relativistic quantum theory, electrodynamics, classical 
gravity theory and cosmology. His original results obtained in 
these areas were published in more than 150 papers. In 2003, 
together with Friedrich Hehl he published a book “Founda-
tions of Classical Electrodynamics: Charge, Flux, and Metric” 
(Birkhauser, Boston).



Preface

Modern understanding of gravitational phenomena is based on the concept of
the spacetime geometry. This is drastically different from Newton’s theory in
which the Euclidean space and an absolute time represented a fixed arena for
independent physical processes of different kind: mechanical, electric, magnetic,
gravitational. Eventually, the development of ideas of Minkowski and Einstein
culminated in a unification of space and time into a four-dimensional spacetime
manifold. Its geometry became dynamical: it is no longer assumed to be fixed
but depends on the motion of matter. In a broad sense, gravitation can be
viewed as a geometrodynamics, i.e., as a theory of a dynamical geometry of
spacetime. The beautiful and powerful methods of differential geometry are used
in Einstein’s general relativity (GR) to describe the gravitational phenomena
in terms of the properties of the four-dimensional spacetime manifold. Later,
it was recognized that the three other physical interactions (electromagnetic,
weak and strong) can also be geometrized by making use of the Yang-Mills
gauge-theoretic approach, and a natural question arose whether the gravity
theory can be consistently formulated in the gauge framework. The answer is
not that simple as it might appear at the first sight. The subtle point is that
the Standard Model is based on the fundamental symmetry groups acting in
the internal spaces, whereas the gravity is obviously related with the symmetry
of the spacetime itself.
In the recent decades, a growing interest of researchers has been attracted

to the problem of construction of a unified theory of fundamental interactions.
Such a theory, capable to explain the hierarchical structure of physical forces
in nature, most probably could be based on the universal principle of the local
invariance and on the resulting formalism of the gauge fields. A significant
progress in this area is manifest in the development of the unified models of weak
and electromagnetic interactions so successfully confirmed by the experimental
discoveries of the gauge bosons and the Higgs particle. However, these models do
not take the gravity into account, and therefore they should be considered only
as approximations to the unification of all interactions which could take place
on extremely small scales, or at the very high energies and high temperatures of
the early Universe, when the gravitational effects are expected to be significant.
Thus, the next step in the construction of a genuine unified theory is a consistent

viii Preface

inclusion of gravity in the general scheme of fundamental physical interactions,
reconciling the principles of general relativity theory with those of the quantum
theory and of gauge field theory.
This book gives an overview of the geometrical gauge approach to the gravity

theory (Chapters 1, 4-6) and methods of the gravitational field quantization
(Chapters 2, 3 and 7). Taking into account the long history of the subject and
the volume of the relevant literature, the material for the book was carefully
selected to provide a minimal but sufficient mathematical introduction to the
methods of the gauge gravitational theory (Chapter 4), and to give a concise
but exhaustive description of all specific physical consequences (Chapters 3
and 5). The special feature of our book is the use of the invariant language
to describe the (3 + 1)-decomposition of the spacetime manifold (Chapter 2).
A particular emphasis is put on a comparison of three different quantization
methods of the gravitational field – the covariant approach, the Dirac-Wheeler-
DeWitt quantization and the method of Arnowitt-Deser-Misner (Chapter 3).
In this regard, it is worth emphasizing that many dramatic changes took

place recently in understanding the concepts, issues and motivations of quantum
gravitational physics. Precision cosmology in the form of the cosmic microwave
background (CMB) observations actually rendered quantum gravity the status
of an experimental subject, inflation theory acquired a dominant role in the
picture of the early Universe and we have been put face to face with the mys-
teries of the dark matter and dark energy phenomena. On top of this progress
quantum geometrodynamics method and quantum cosmology have lost a sta-
tus of acute direction in theoretical physics and, moreover, a widely accepted
viewpoint prevailed that this approach is essentially discredited due to numer-
ous but rather unproductive applications of the Wheeler-DeWitt equation. This
opinion is, however, very erroneous, in particular, because the analogous situa-
tion in quantum field theory is treated completely differently – nobody calls in
question the status of the Schrödinger equation, even though almost all field-
theoretical results were attained by the relativistic invariant S-matrix method.
Similarly with the Wheeler-DeWitt equation – it lies at the foundation of quan-
tum gravity theory of the Universe as a whole, even though its direct application
to concrete problems might be ineffective and should be replaced by such ad-
vanced, though technical, tools as path integration. This is the main objective
of Chapter 7.
The idea to write this book was born after the reprint volume with commen-

taries by Friedrich Hehl and Milutin Blagojević “Gauge Theory of Gravitation”
was published in 2013, referring to our monograph “Geometrodynamical meth-
ods and gauge approach in the theory of gravitational interactions” which ap-
peared in Russian in 1985. An original plan was to translate that old book into
English. However, soon it became clear to the authors that after the 30 years
some of the material became outdated and should be removed, whereas im-
portant new results which appeared in the meantime (also due to the authors)
should be included. A need of the serious changes became obvious, and a new
deeply revised book was written, now in English. In particular, the discussion of
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the classical gauge models and the quantum gravity methods has undergone an
essential revision. At the same time, we decided to preserve the general struc-
ture of the monograph and to keep the overall presentation style which was, in
our opinion, quite successfully chosen in the old book.
We did not intend to describe in detail the modern mathematical methods

of the classical gravity theory, which can be found in [2, 3, 4]. The summary of
the relevant notions and definitions is given in Appendix A3. At the same time,
all the derivations and constructions necessary for understanding of the book
are given in full. We also did not try to provide a comprehensive review of the
literature on the subject. This is to some extent compensated by the comments
to the literature presented at the end of the book in Appendix A4. Moreover,
we compiled an exhaustive bibliography of more than 3000 publications on the
gauge gravity theory, its physical aspects and related mathematical results.
Since no special preselection was made, the readers should clearly understand
that some items in this bibliography may be erroneous or misleading, however,
we do hope that none of the important publications on the gauge gravity was
overlooked, thus making this bibliography a useful resource on the subject.
The book addresses the physicists who specialize in the gravity theory and the

high-energy physics, and it can be recommended to the graduate students and
senior undergraduate university students in physics and mathematics, who are
familiar with the classical and quantum field theory at the level of the textbooks
“Classical field theory” of L.D. Landau and E.M. Lifshitz and “Introduction to
the theory of quantized fields” of N.N. Bogoliubov and D.V. Shirkov.
The book is written jointly by the authors. Chapters 1, 4-6 are based on

original works of Yu.N. Obukhov and V.N. Ponomarev. The material presented
in Chapters 2, 3, and 7 is based on the results obtained by A.O. Barvinsky and
V.N. Ponomarev.
To help the reader, we give an approximate scheme of dependence of the

chapters:

The authors express their profound gratitude to all colleagues who took part
in the discussion of results presented in the book. We are sincerely grateful
to the scientific and administrative staff of the Nuclear Safety Institute of the
Russian Academy of Sciences (IBRAE RAN) for the constant and generous
support and for the assistance in preparing the manuscript for publication. One
of the authors (A.O.B.) is grateful for hospitality to the Theory Division of
CERN where his work on the book was accomplished. Y.N.O. acknowledges a
partial support from the Russian Foundation for Basic Research (Grant No. 16-
02-00844-A).

Authors
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1
Lagrangian description of gravity
theories of Hilbert-Einstein type

1.1. Geometrical spacetime structures

In the framework of the geometrodynamical approach, we model the spacetime
as a smooth four-dimensional manifold M4. On the latter, one can introduce
various geometrical structures to describe the gravitational field. In this section,
we present a brief overview of the most important ones: the metric and the
affine connection structure. The summary of the main notions, definitions and
methods of the modern differential geometry can be found in Appendix A1, for
a more detailed exposition see [2]-[4]. Our basic notations are given on page 173.

Metric structure (g-structure)

A differentiable manifold M4 is called a Riemannian space V4, when the met-
ric is defined on it, that is when a smooth tensor field gµν(xλ), such that
gµν(xλ) = gνµ(xλ), introduces the metricity relations on the manifold: for any
two infinitely close points x and x+dx, the interval (“distance”) between them
is defined by

ds2 = gµνdx
µdxν .

The metric defines a scalar product on the manifold by assigning to any two
vectors A and B a real number AB = gµνA

µBν , and thereby introduces for each
vector V its length l2(V ) = gµνV

µV ν . By definition, the metric is assumed to be
non-degenerate in the sense that the determinant g = det gµν 6= 0. This allows to
determine the matrix gµν(xλ) inverse to gµν(xλ) such that gµνgνλ = δµλ , thereby
establishing an isomorphism between the covariant and contravariant tensor
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spaces. In local coordinates, this isomorphism is described by the operation of
raising and lowering of indices. The metric is called Lorentzian if its signature
is ±2. The Lorentzian metric structure forms the basis of the general relativity
theory (GR).

Connection structure (Γ-structure)

Independently of the metric structure, one can define the structure of an affine
connection on M4 manifold. The linear (affine) connection Γ introduces the
local isomorphism of tangent spaces at different points x ∈M4 of the manifold,
by specifying a rule that maps a vector V (an element of the tangent space)
at a point x into a vector V ′ at an infinitely near point x + dx. In the local
coordinates, this law is written as

δV µ = V ′
µ − V µ = −ΓµναV

νdxα.

Thus, equivalently, we say that the affine connection Γ is introduced on M4

manifold, when the global (i.e., given in each chart of the atlas of the manifold)
field Γµνα(x) is defined on it. When changing one coordinate chart {x} to
another one {x′}, the quantities Γµνα(x), which are called coefficients of the
linear (affine) connection, are transformed as

Γ′αβµ(x′) =

[
∂xα

∂x′ρ
∂x′σ

∂xβ
Γρσν(x) +

∂xα

∂x′ρ
∂

∂xν

(
∂x′ρ

∂xβ

)]
∂x′ν

∂xµ
.

By defining of the connection structure, one can introduce the notion of a
covariant derivative of a tensor. The covariant derivative with respect to an
arbitrary connection Γ is denoted by ∇ and is defined as follows. Suppose that
in the local coordinates, the tensor field has components T

α1αp
...β1...βq

. Then

∇µT
α1...αp
β1...βq

= ∂µT
α1...αp
β1...βq

+ Γα1
ρµT

ρα2...αp
β1...βq

· · ·+ ΓαpρµT
α1...ρ
β1...βq

−Γσβ1µT
α1...αp
σ...βq

· · · − ΓσβqµT
α1...αp
β1...σ

.

The connection also defines the notion of a parallel transport of tensors.
Let γ(t) be a smooth curve in M4, specified by the parametric equations
γ = {xµ(t)}. Then we define the covariant derivative of a tensor field T along
this curve, DT/dt. In the local coordinates, it is equal to DT/dt = dxµ

dt ∇µT .
The manifold M4 with the connection structure defined on it is called an

affinely connected space (denoted by L4), and it is characterized by a number
of geometrical objects which we briefly consider below.

In general, we assume that both structures –the metric and the connection–
are introduced on the manifold. By definition, they are independent. We call
such a space a generalized metric-affine spacetime G4.

Let us consider the parallel transport of a vector V from a point x ∈ G4

along some closed curve γ ⊂ G4. When returning back to x, one finds that in
general case the final (parallelly transported) vector V ′ does not coincide with
the original one V . The difference is manifest in the three effects: the vector V ′
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is rotated with respect to V , its length is changed, and the image of the contour
γ in the tangent space turns out to be broken by a non-zero vector.

These effects are determined by the following basic geometrical objects of G4:
The curvature tensor of the connection Γ

Rαβµν = ∂µΓαβν − ∂νΓαβµ + Γαρµ Γρβν − Γαρν Γρβµ; (1.1)

the homothetic curvature tensor

Ωµν = ∂µΓ·ν − ∂νΓ·µ, (1.2)

where Γ·µ := Γλλµ;
and the torsion tensor [20]

Qαµν = Γα[µν] =
1

2
(Γαµν − Γανµ). (1.3)

In the local coordinates, the aforementioned effects of the parallel transport
along a closed loop read as follows:

– the rotation of a vector:

δV α ≈ Rαβµν V β dsµν , (1.4)

– the change of the length:

δl ≈ l(V ) Ωµν ds
µν , (1.5)

– the contour image in the tangent space is broken by the vector:

ξα ≈ 2Qαµν ds
µν . (1.6)

Here dsµν is the surface element spanned by the closed contour γ.

We introduce now another fundamental tensor which is an important charac-
teristic of G4 manifold, even being not entirely independent of the tensors intro-
duced above. This is the nonmetricity tensor that measures the (in)compatibility
of the independent metric and connection. It is equal to the covariant derivative
of the metric gαβ :

Kµαβ = ∇µgαβ . (1.7)

We say that the metric and connection are compatible when Kµαβ = 0 van-
ishes on M4, i.e., when the metricity condition is fulfilled

∇µgαβ = 0. (1.8)

Let us consider some properties of the fundamental tensors. A closer inspec-
tion of the aforementioned non-integrable effects (1.4)-(1.6) shows that they are
due to the fact that covariant derivatives ∇ do not commute with each other.
For any vector V we find

(∇µ∇ν −∇ν∇µ)V α = RαβµνV
β + 2Qβµν∇βV α.
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This result can be generalized to arbitrary tensors. In particular, by consider-
ing the commutator of covariant derivatives of the metric, we obtain the useful
identities relating the curvature tensors (1.1) and the nonmetricity (1.7):

2∇[µKν]αβ = 2∇[µ∇ν]gαβ = − 2R(αβ)µν + 2Qρµν Kραβ . (1.9)

As a result, we find that the symmetric part of the curvature tensor in the
first pair of indices R(αβ)µν is nontrivial when Kαµν 6= 0. Contracting eq. (1.9)

with gαβ , we recover the homothetic curvature

gαβRαβµν = Rααµν = Ωµν = − 1

2
(∂µKν − ∂νKµ), (1.10)

where Kµ = Kµαβ g
αβ is the vector of nonmetricity (or otherwise, the Weyl

vector field [5]).
The equation (1.7) can be solved with respect to the connection Γλµν so that

the latter is expressed in terms of the metric, torsion and nonmetricity:

Γλµν = {λµν}+Dλ
µν . (1.11)

Here
{λµν} =

1

2
gλσ (∂νgµσ + ∂µgνσ − ∂σgµν)

is the Christoffel symbol, and

Dλ
µν = Qλµν +Qµν

λ +Qνµ
λ − 1

2
gρλ(Kνµρ +Kµνρ −Kρµν)

is the connection defect tensor (also called a distortion tensor). The connection
{λµν} is the only torsion-less connection which is compatible with the metric
structure. It is called a Riemannian or a metric connection.

An arbitrary connection with a non-zero torsion, but compatible with metric,
is called the Riemann-Cartan connection. Its explicit structure is obtained from
(1.11) if we put Kαµν = 0:

Γλµν = {λµν}+Qλµν +Qµν
λ +Qνµ

λ = {λµν}+ Tλµν . (1.12)

The combination
Tλµν = Qλµν +Qµν

λ +Qνµ
λ

is usually called a contortion tensor. From now on we will confine ourselves to
the Riemann-Cartan spacetime U4 with the metric and the Riemann-Cartan
connection (1.12).

The fundamental tensors in U4 have a large number of independent com-
ponents (24 for the torsion and 36 for the curvature), and it is convenient
to decompose these geometrical objects into the L6-irreducible pieces (where
L6 = SO(3, 1) is the Lorentz group). The decomposition of the torsion tensor
into the three L6-irreducible parts reads as follows:

Qλµν = Q
λ
µν +

2

3
δλ[ν Qµ] + gλσεµνσρ Q̌

ρ. (1.13)
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Here Q
λ
µν is the traceless part of the torsion tensor, with the properties:

Q
λ
µλ = 0 and ελµνρQµνρ = 0; the torsion trace vector is Qµ := Qλµλ; and

Q̌µ = 1
6εµνλσ Q

νλσ is the torsion pseudotrace vector (ελµνχ is the totally anti-
symmetric Levi-Civita tensor: ελµνχ = ε[λµνχ]).

In a similar way, one can decompose the curvature tensor in U4 spacetime
into the 6 irreducible pieces [26]:

Rαβµν(Γ) = Cαβµν(Γ) +
1

2
{gαµRβν(Γ)− gανRβµ(Γ)− gβµRαν(Γ)

+ gβνRαµ(Γ)} − 1

6
(gαµ gβν − gαν gβµ)R(Γ)

+
1

12
εαβµνD(Γ) +

1

4

{
εαβµ

λD(λν)(Γ)− εαβνλD(λµ)(Γ)

+ εµνβ
λD(λα)(Γ)− εµνα·λD(λβ)(Γ)

}
. (1.14)

Here Cµλνχ(Γ) is the non-Riemannian analog of the Weyl tensor with the same
algebraic properties

Cλµνχ(Γ) = Cνχλµ(Γ), Cλµλν(Γ) = 0, C[λµν]χ(Γ) = 0,

Cλµνχ(Γ) = C[λµ]νχ(Γ) = Cλµ[νχ](Γ),

Rµν(Γ) = Rλµλν(Γ) is the generalized Ricci tensor, R(Γ) = gµν Rµν(Γ) is the
curvature scalar, and Dµ

ν(Γ) = 1
2ε
µαβλRαβλν(Γ) so that D(Γ) = Dµ

µ(Γ). The
list of the 6 irreducible curvature part includes the generalized Weyl tensor, the
curvature scalar, the curvature pseudoscalar, the skew-symmetric part of the
Ricci tensor, and the two traceless symmetric tensors:

Cαβµν(Γ), R(Γ), R(µν)(Γ)− 1

4
R(Γ)gµν ,

R[µν](Γ), D(Γ), D(µν)(Γ)− 1

4
D(Γ)gµν .

The total number of components is, as expected: 36 = 20+1+9+6+1+9. The
second line represents the essentially non-Riemannian irreducible parts. When
the torsion (1.3) vanishes, eq. (1.14) reduces to the standard decomposition for
Riemann-Christoffel curvature tensor [27] into the three pieces shown in the
first line.

It is worthwhile to note that the skew-symmetric tensor D[αβ](Γ) does not
represent an independent part. It is expressed in terms of the antisymmetric
part of the Ricci tensor: D[µν](Γ) = − 1

2εµναβ R
[αβ](Γ).

The Riemann-Cartan curvature (1.12) is antisymmetric in the first pair of
indices, as it is obvious from (1.9), and it satisfies the following identities:

Rα[µνλ](Γ) = − 2∇[µQ
α
νλ] + 4Qαβ[µQ

β
νλ] (1.15)

– the generalized Ricci identity;

Rαβµν(Γ)−Rµναβ(Γ) =
3

2
{R[αβµ]ν(Γ)−R[αβν]µ(Γ)

−R[µνα]β(Γ) +R[µνβ]α(Γ)}, (1.16)
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– the “commutator of pairs of indices” identity;

∇[µR
αβ

νλ](Γ) = 2Rαβσ[µ(Γ)Qσνλ] (1.17)

– the generalized Bianchi identity.
Contracting a pair of indices (upper and lower) in (1.15), we derive a so-called

contracted Ricci identity

R[µν] = (∇λ − 2Qλ)
(
Qλµν + 2δλ[µQν]

)
.

Similarly, contracting the two pairs of indices in (1.17), we find the contracted
Bianchi identities

(∇σ − 2Qσ)Gσµ(Γ) + 2Qρµσ G
σ
ρ(Γ) + (Qσαβ + 2δσ[αQβ])R

αβ
σµ(Γ) = 0, (1.18)

where
Gλν(Γ) = Rλν(Γ)− 1

2
gλνR(Γ)

is the generalized Einstein tensor.
With the help of the geometrical objects introduced above, one can estab-

lish a natural classification of the spacetime theories in accordance with their
underlying metric-affine structures, see Table 1.1.

Tetrad structure

Along with the so-called world geometrical structures which we described above,
in the gravity theory one effectively uses their local Lorentz analogues. In the
latter approach, the main object is tangent bundle T (M), and the related bundle
of orthonormal frames AO(M) which is the principal fibre bundle with the
Lorentz L6 structure group.

All the geometrical objects of the spacetime theory had previously been de-
fined in the local coordinates on the manifold with respect to the world or
coordinate frame ∂µ ≡ ∂/∂xµ in the tangent space Tx(M). However, it is often
convenient (and when considering spinors in M4, it is necessary) to define all the
objects with respect to arbitrary orthonormal basis in T (M), {ea}, a = 0, 1, 2, 3.
Such a frame is orthonormal in the sense that the scalar products of its legs are
equal (ea · eb) = ηab = diag(−1,+1,+1,+1) – the Minkowski metric. We call
such a basis a local Lorentz frame, and accordingly all the geometrical objects
are also called the local Lorentz objects when they are considered with respect
to this frame. In order to distinguish the components with respect to {ea} from
the components with respect to {∂µ}, we will use the Latin indices (a, b, c . . . )
for the local Lorentz frames, while the Greek indices (µ, ν, λ . . . ) will label the
world quantities with respect to {∂µ}.

The transition from a coordinate frame to an arbitrary orthonormal frame is
described by the tetrad coefficients haµ. By definition

∂µ = haµ ea.
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Table 1.1: Classification of metric-affine theories

Geometrical objects Type of space Example of theories

R···· = 0 Q··· = 0 Ω·· = 0 Minkowski space M4 Special relativity theory

R···· = 0 Q··· 6= 0 Ω·· = 0 Weitzenböck (or absolute
parallelism) space P4

Translational gauge grav-
ity theory [34]

R···· 6= 0 Q··· = 0 Ω·· = 0 Riemann space V4 General relativity theory
(GR) [27]

R···· 6= 0 Q··· = 0 Ω·· 6= 0 Weyl space W4 Weyl’s gravity theory [5]

R···· 6= 0 Q··· 6= 0 Ω·· = 0 Riemann-Cartan space
U4

Einstein-Cartan gravity
theory (ECT) [7, 6]

R···· 6= 0 Q··· 6= 0 Ω·· 6= 0 Generalized metric-affine
space G4

Various asymmetric field
theories, in particular
Einstein-Schrödinger [9]

These quantities are closely related to the spacetime metric, namely

gµν = haµ h
b
ν ηab. (1.19)

In the bundle of the Lorentz frames, one can define a connection Γabµ that
introduces their parallel transport. The latter is naturally induced by the world
affine connection Γλµν . The coefficients of the local Lorentz connection read as
follows:

Γabµ = haα h
β
b Γαβµ + haσ∂µh

σ
b . (1.20)

Here, the quantity haµ is defined as an inverse matrix to hµa :

haµ h
ν
a = δνµ, haµ h

µ
b = δab .

The frame ea is called nonholonomic, if the corresponding tetrad coefficients
haµ are no partial derivatives of some four functions fa(x), a = 0, 1, 2, 3, i.e.,
when haµ 6= ∂µf

a. Geometrically, it means that there are no such local coordi-
nates ya = fa(x), with respect to which ea becomes a coordinate basis. The
degree of deviation from the field of integrable local Lorentz frames, for which
such new coordinates exist, is measured by the anholonomity object

Caµν := ∂µh
a
ν − ∂νhaµ. (1.21)

This object is not a tensor, and it is closely related to the tetrad form of the
Riemannian connection induced by the metric. As a result, one can reformulate
Einstein’s GR in terms of the tetrad haµ and the anholonomity object Caµν [8].

Computing the commutator of covariant derivatives Dµv
a = ∂µv

a + Γabµv
b

with respect to the local Lorentz connection, we obtain the local Lorentz cur-
vature

Rabµν = ∂µΓabν − ∂νΓabµ + ΓacµΓcbν − ΓacνΓcbµ.
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It is easy to show that the latter is related to the curvature tensor of the world
affine connection,

Rabµν = haαh
β
b R

α
βµν .

Analogously, we can prove that it is possible to recast the torsion tensor into a
generalized covariant “curl” of the tetrad:

Dµh
a
ν −Dνh

a
µ = − 2haλQ

λ
µν .

The tetrad formalism represents another framework for the gravity theory.
The metric and the affine connection (gµν ,Γ

α
βµ) in this approach are replaced

by the tetrad and the local Lorentz connection (haµ,Γ
a
bµ). It will be shown

later that there is close relation of the latter variables with the structure of the
principal bundle of the Lorentz group and it turns out to be possible to develop
a consistent gauge approach to the gravity theory using this formulation.

Apparently, the most convenient mathematical formalism for the gauge ap-
proach in gravity is the theory of connections in the bundles over the spacetime
manifold M4. See Chapter 5 for the further details.

1.2. Hilbert variational principle and field equations
of the general relativity

Einstein [22] formulated the fundamental equations of GR describing the dy-
namics of the interacting gravitational and matter fields on the basis of an idea
that matter (its energy-momentum tensor Tµν) gives rise to the Riemannian
curvature of spacetime. An additional requirement was that the covariant con-
servation law Tµν ;ν = 0 should be an automatic consequence of the field equa-
tions. The latter assumption almost uniquely fixed the Einstein tensor Gµν as
an appropriate structure describing the geometry of the Riemannian spacetime
by making use of the contracted Bianchi identity (1.18) for the case of the
vanishing torsion Qλµν = 0.

As a result, Einstein’s gravitational field equations read as follows:

Gµν = κTµν , (1.22)

where the value of the Einstein gravitational constant κ = 8πG/c4 = 2.07×
×10−43 kg−1 m−1 s2 was derived from the comparison of GR with Newton’s
gravitation theory; G = 6.67×10−11 m3 kg−1 s−2 is the Newtonian gravitational
constant.

In a vacuum (in the absence of matter), these equations reduce to

Gµν = 0 or Rµν = 0. (1.22a)

At the same time, the field equations (1.22a) were derived by Hilbert [23] on
the basis of the fundamental dynamical principle – the principle of the least
action,
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SHE =
1

2κc

∫
d4x
√
gLHE =

1

2κc

∫
d4x
√
g R.

Gravity models based on Lagrangian which is linear on curvature, are called
the gravity theories of the Hilbert-Einstein type.

A short remark is in order concerning the dimensions. The metric compo-
nents are dimensionless, whereas the connection coefficients have a 1/length
dimension. Accordingly, the curvature and its contractions have a dimension of
1/(length)2. Consequently, the dimension of the integral is [d4xR] = m2. Tak-
ing into account that [ 1

κc ] = kg/s, we find that the action [SHE ] = kg m2/s =
= [~] indeed has the dimension of the action (recall that the Planck constant is
a “quantum of an action”).

By substituting the expression of the Christoffel symbols {λµν} in terms of the
metric gµν into LHE , we obtain [27]

LHE = LHE [gµν,λκ , gµν,κ , gµν ] = gµν
(

2{λµ[ν},λ] + 2{λσ[λ}{
σ
ν]µ}

)
=

1

2
(gµν,σκ + gσκ,µν − gµκ,σν − gσν,µκ) gµκ gσν

+ gµκgσνgαβ
(
{ασκ}{βµν} − {ασν}{βµκ}

)
.

Commas denote the usual partial derivatives, ,λ := ∂λ, etc. Let us vary the
action SHE with respect to the metric gµν . Then

δgSHE =
1

2κc

∫
Ω

d4x
√
g Gµνδg

µν

+
1

2κc

∮
∂Ω

dσλ
√
g gµκ

[
−δg{λµκ}+ δλµδg{ρκρ}

]
= 0, (1.23)

dσλ =
1

3!
ελµνχ dx

[µdxνdxχ].

Einstein’s equations (1.22a) follow from (1.23), if and only if the surface term
vanishes due to the conditions imposed by the respective boundary problem∮

∂Ω

dσλ
√
g gµκ

[
−δg{λµκ}+ δλµδg{ρκρ}

]
= 0, (1.24)

that is when the variational principle is consistent with the boundary value
problem of the resulting Euler-Lagrange equations. The boundary conditions
specify the appropriate test functions, and thereby restrict the class of the
variational problems [10].

Einstein’s equations are the second-order partial differential equations with
respect to metric gµν in the spacetime domain Ω, hence an appropriate Dirichlet
boundary value problem for them fixes the values of the metric at the boundary
∂Ω of the spacetime domain, gµν ∂Ω = Cµν . However, the corresponding condi-
tion on the variations, δgµν ∂Ω = 0 is clearly not sufficient to make the surface
term (1.24) vanish, in general. The only exceptions are the gravitational fields
of isolated matter configurations (the asymptotically flat metrics).
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Strictly speaking, the statement that a physical theory is based on the vari-
ational principle δS = 0 is valid only when the system of the Euler-Lagrange
equations is solved under the boundary conditions obtained from the station-
arity condition of the action S. In other words, the boundary conditions ob-
tained from the stationarity conditions should not contradict the order of Euler-
Lagrange equations, i.e., the corresponding Lagrangian is a proper (nondegen-
erate) one.

For a given boundary value problem, a proper (nondegenerate) Lagrangian
is not linear in the higher derivatives of the field functions. Making use of this
definition, we conclude that the Hilbert Lagrangian of the gravitational field
LHE = R is degenerate [11].

Let us illustrate the above by the example from mechanics. Consider the two
Lagrangians L1 = − 1

2qq̈, and L2 = 1
2 q̇

2 (q is the generalized coordinate, the dot
denotes the time differentiation). Variations of the respective action functionals
are given by

δS1 = −
∫ t2

t1

q̈δq dt− 1

2
qδq̇

t1

t2
+

1

2
q̇δq

t1

t2
, (1.25)

δS2 = −
∫ t2

t1

q̈δq dt+
1

2
q̇δq

t1

t2
. (1.26)

Both actions yield the same Euler-Lagrange equation q̈ = 0. However, eq. (1.25)
tells us that in order to obtain the equation of motion, it is necessary to fix the
values of the coordinate q(t1), q(t2), and the values of the velocities q̇(t1), q̇(t2)
at the boundary. But this is impossible in view of the order of these equations.
The attempt in (1.25) to impose only two conditions, for example (q/q̇) t2t1 , does
not lead to a physically meaningful result. As for (1.26), the equation of motion
q̈ = 0 follows from the usual variational problem with the fixed endpoints
δq(t1) = δq(t2) = 0, consistent with the correct boundary value problem.

In a sense, L1 in this mechanical example is similar to the Hilbert Lagrangian
LHE , and L2 is similar to the so-called truncated Lagrangian

LD = G = gµν
(
−{λσλ}{σµν}+ {λσν}{σµλ}

)
,

see [40]. The latter is a proper Lagrangian that leads to the self-consistent
boundary value problem Gµν = 0, gµν ∂Ω = Cµν = const.

It is worthwhile to note that LD (not LHE) up to a boundary term coincides
with the Lagrangian in the gauge theory of the translation group [13]:

LT4 = − 1

4
CabcC

abc − 1

2
CabcC

bac + Cab
bCacc.

Here Cabc = hµb h
ν
cC

a
µν .

In Hawking’s approach [14], the truncated action is written as

SD = SHE + 2

∫
∂Ω

d4x
√
gK,
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where the ordinary Hilbert-Einstein action is explicitly supplemented by the
“surface term”. The boundary term is an integral of K which is the difference
of traces of the second fundamental form of boundary ∂Ω for the metric g
and for the flat space metric. The role of the surface term is to compensate the
contribution of the second derivatives of the metric in R, so that the Lagrangian
becomes quadratic in the first derivatives (which means a nondegenerate), as
required in the path integration method.

Along with Hilbert’s method of derivation of Einstein’s field equations from
the variational principle with the action linear in the curvature, the gravita-
tional field equations can be obtained within the framework of the first-order
formalism, commonly called a Palatini principle [28], which we present in the
next section.

1.3. First-order formalism and field equations
of the Einstein-Cartan theory

In the derivations above, the Riemannian character of the spacetime structure
was essential. However, we now recall that the metric and connection are defined
as a priori independent structures on a differentiable manifold. Therefore, from
the geometrical point of view, it would be more natural to consider gµν and
Γλµν as the independent dynamical variables of the gravitational theory. This
idea underlied the variational principle of Palatini, who did not impose the
metricity condition (1.8) as a constraint equation on gµν and Γλµν . However,
he kept the torsion tensor equal zero: Qλµν = 0.

In this case, the field equations are obtained from the independent variation of
the Hilbert action SHE = 1

2κc

∫
Ω
d4x
√
g R(gµν , Γλ(µν),α, Γλ(µν)) with respect

to the metric gµν and the symmetric connection Γλ(µν). The variation of SHE
with respect to the metric yields

Gµν
(
gµν , Γλ(µν),α, Γλ(µν)

)
= 0, (1.27)

and from the variation with respect to Γλµν one obtains the metricity condition
(1.8). If the latter is solved with respect to Γλµν (under the condition Qλµν = 0)
and the result is plugged back into (1.27), we obtain Einstein’s field equation
(1.22a) as before.

The vanishing torsion condition Qλµν = 0 is the constraint equation for the
dynamical variables (gµν , Γλµν). This fact was taken into account from the
beginning of the derivation of the field equations by assuming Γλµν = Γλ(µν). If
the constraints are not resolved from the very beginning, they should be added
to the original Lagrangian with the undetermined Lagrange multipliers. Then
the problem of derivation of the field equations becomes a variational problem
on the conditional extremum of the action [15, 16, 17]. If the constraints are
imposed after the field equations are derived, the resulting system would not
be equivalent to the case, when the field equations are obtained by taking into
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account constraints even before the variation. The exceptions arise when the
Lagrange multipliers vanish due to field equations1.

We thus have demonstrated that Einstein’s field equations in vacuum can be
obtained by the Palatini variational method provided the torsion is equal zero.
As we show below, by removing the restriction Qλµν = 0 it is possible to obtain
more general gravitational field theories.

Let us consider the gravitational field dynamics based on the Palatini princi-
ple [18], assuming the full independence of the metric tensor from the general
affine connection. The variation of Hilbert-Einstein type action (the subscript

P stands for “Palatini”)

SP =
1

2κc

∫
d4x
√
gLP =

1

2κc

∫
d4x
√
g R(Γ)

yields, in the absence of matter (in vacuum):

δSP
δgµν

= −G(µν)(Γ) = 0, (1.28)

δSP
δΓλµν

= −∇λgµν + δνλ∇ρgµρ + 2Qνµλ + gµνDλ −Dµδνλ = 0, (1.29)

where Dλ = Dρ
λρ is the connection defect trace.

By splitting (1.29) into the symmetric and antisymmetric parts, we obtain:

Qλµν = − 2

3
δλ[µQν], (1.30)

∇λgµν =
4

3
Qλgµν . (1.31)

By solving the last equation with respect to Γλµν , we obtain the relation
between the connection, the metric and the torsion

Γλµν = {λµν} −
2

3
δλµQν . (1.32)

Substituting (1.32) in (1.28), we find

Gµν = 0. (1.33)

Summarizing, the following results were obtained by using the consistent
Palatini principle:

– For the metric, the field equations (1.33) coincide with Einstein’s equa-
tions of GR in vacuum.

– The torsion is expressed in terms of its trace Qλ (1.30) (i.e., the connection
(1.32) is semi-symmetric [24]) and remains arbitrary since the contraction
of the equation (1.30) yields an identity.

1If the Lagrangian is supplemented by the term λλµνQλµν containing the Lagrange mul-

tipliers λ, the result is not changed, since λλµν = 0 due to the field equation.
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– The covariant derivative of the metric (the nonmetricity) does not vanish
(1.31) (the semi-metric parallel transport [24]).

However, the results obtained are not satisfactory since the torsion trace Qλ
is not fixed, therefore, all the main geometrical characteristics of the manifold
are not determined. To find the way out of this situation, it is necessary to
consider the variation principle with a different Lagrangian (see Chapter 5).

If we consider the theory with a Hilbert-Einstein Lagrangian, but require
the preservation of vector lengths under the parallel transport, we obtain the
Einstein-Cartan theory of gravity. The constraints (1.8) can be resolved from
the very beginning and taken into account in action [7] or, without resolving
them explicitly, they can be added to the Lagrangian with the undetermined
Lagrange multipliers, and then the problem of derivation of the field equations
becomes a variational problem on the constrained extremum of action [15, 16].
We consider the second procedure, including now into the dynamical scheme,
along with the gravity, the matter fields interacting with the gravitational field.
The gravitational interaction is introduced into the matter Lagrangian Lm on
the basis of the minimal coupling principle by replacing the Minkowski metric
ηµν with the metric of the curved space gµν(xλ), and of the partial derivatives
– with the covariant derivatives of the connection Γλµν .

The total action reads

SECT =

∫
d4x
√
g

{
1

2κc
R(Γ) +

1

c
Lm(ΦA,∇µΦA, gµν) +

1

2c
Λλµν∇λgµν

}
,

(1.34)
where ΦA are the matter field variables (A is the generalized index), Λλµν are
the Lagrange multipliers. The matter Lagrangian depends on the connection
Γαβµ via the covariant derivatives only

∇µΦA = ∂µΦA − ΓαβµΩα
βA

B ΦB . (1.35)

Here Ωα
βA

B are the generators of the general coordinate transformations:

xµ −→ xµ + ξµ(x), ΦA −→ ΦA − (∂βξ
α)Ωα

βA
BΦB .

By varying (1.34) with respect to gµν , Γλµν , Λλµν , and ΦA, we obtain the
following field equations:

δSECT
δgµν

=
1

2c

{
1

κ
G(µν)(Γ) + (∇λ − 2Qλ)Λλµν − Tµν

}
= 0, (1.36)

δSECT
δΓαµν

=
1

c

{
− 1

κ
(Qναβ + 2δν[αQβ]) g

βµ +Nα
µν − Λνµα

}
= 0, (1.37)

δSECT
δΛλµν

=
1

2c
∇λgµν = 0, (1.38)

δSECT
δΦA

=
1

c

{
∂Lm
∂ΦA

− (∇λ − 2Qλ)
∂Lm
∂∇λΦA

}
= 0, (1.39)
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where (1.36) and (1.37) are given in the final form after taking into account the
metricity constraint (1.38). Here, in a usual way we defined

Tµν :=
2
√
g

∂
(√
gLm

)
∂gµν

the metrical energy-momentum tensor of matter, and we denoted

Nα
µν =

∂Lm
∂Γαµν

.

Making use of the eq. (1.35), we find

Nα
µν =

∂Lm
∂∇λΦA

∂∇λΦA

∂Γαµν
= − ∂Lm

∂∇νΦA
Ωα

µA
BΦB . (1.40)

Solution of (1.38) with respect to Γαµν yields the Riemann-Cartan connection
(1.12). Lowering the index µ in (1.37), we obtain the equation

− 1

κ
(Qναβ + 2δν[αQβ]) +Nαβ

ν − Λνβα = 0.

Let us decompose it into the symmetric and antisymmetric parts. From the
symmetric one, we find the Lagrange multipliers explicitly

Λναβ = N(αβ)
ν ,

so that (1.36) is recast into

G(µν) (Γ) = κ
{
Tµν − (∇λ − 2Qλ)N(µν)

λ
}
. (1.41)

The remaining antisymmetric part of (1.37) reads as follows:

Qναβ + 2δν[αQβ] = κcSναβ , (1.42)

where

cSναβ = N[αβ]
ν = − ∂Lm

∂∇νΦA
Ω[αβ]

A
BΦB

coincides with the canonical tensor of the spin density arising from the Noether
theorem.

For the matter whose Lagrangian does not depend on the connection (for the
scalar fields, for example), or for the vacuum gravitational field, the equations
(1.42) yield Qλµν = 0 and then (1.41) reduce to the usual Einstein’s equations.

Otherwise, the torsion is non-zero and (1.41) differ from the GR equations.
One can show that the term (∇λ − 2Qλ)N(µν)

λ leads to the fact that the sources

of the gravitational field are the canonical tensor of spin Sλµν , and the sym-
metrical part of the canonical tensor of the energy-momentum of matter

tµν := δµν Lm −
∂Lm
∂∇µΦA

∇νΦA .
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Indeed, let us consider an infinitesimal transformation of local coordinates
xµ −→ xµ = xµ + ξµδτ , where ξµ(xλ) is an arbitrary smooth vector field,
and δτ is an infinitesimal parameter. The Lie derivative of the Lagrangian
density

√
gLm(ΦA,∇µΦA, gµν) along the vector field ξµ, which induces these

transformations, is computed as follows:

Lξ (
√
gLm) =

∂(
√
gLm)

∂ΦA
LξΦ

A +
∂(
√
gLm)

∂∇µΦA
Lξ∇µΦA +

∂(
√
gLm)

∂gµν
Lξgµν . (1.43)

Using the definition of Lie derivative (which is introduced on the spacetime
manifold even in the absence of the metrics and connection [3]), it is straight-
forward to see that in the Riemann-Cartan space

LξΦ
A = ξλ∇λΦA + ζβ

αΩα
βA

BΦB , (1.43a)

Lξ∇µΦA = ξλ∇λ∇µΦA + ζβ
αΩα

βA
B∇µΦB + ζµ

ν∇νΦA, (1.43b)

Lξgµν = 2 ζ(µν), (1.43c)

where ζµ
ν = ∇µξν + 2Qνµλξ

λ.
On the other hand, since

(√
gLm

)
is a scalar density of the weight +1, we

have

Lξ (
√
gLm) = ξλ∇λ (

√
gLm) + ζµ

µ (
√
gLm) . (1.43d)

Substituting (1.43a)-(1.43c) into (1.43) and comparing with (1.43d), we find

− tµν + Tµν − (∇λ − 2Qλ)Nν
µλ + c

δSECT
δΦA

Ων
µA

BΦB = 0, (1.44)

(∇µ − 2Qµ) tµν + 2Qλνµt
µ
λ + cSµαβR

αβ
µν (Γ) = c

δSECT
δΦA

∇νΦA. (1.45)

By virtue of the field equations (1.39), we get from (1.44)

t(µν) = Tµν − (∇λ − 2Qλ)N(µν)
λ, (1.46)

t[µν] = c (∇λ − 2Qλ)Sλµν . (1.47)

Thus we see that eq. (1.46) establishes the relation between the symmetrical
part of the canonical and the metrical tensors of energy-momentum of matter.
Making use of this relation in (1.41), we find the complete system of the field
equations of the Einstein-Cartan theory:

Gµν (Γ) = κ tµν , (1.48)

Qλµν + δλµ Qν − δλν Qµ = κcSλµν . (1.49)

It is worthwhile to note that to determine the dynamics of the metric it is
sufficient to solve only the symmetric part of (1.48) which is equivalent to
(1.41). The skew-symmetric part of (1.48) is redundant and is automatically
satisfied in view of (1.49) and the contracted Ricci identity.
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Summarizing, within the framework of the Einstein-Cartan theory, the mat-
ter source of gravitational field (g,Γ) is described by the canonical energy-
momentum tensor tλµ and the spin density tensor Sλ·µν . The invariance of the
theory with respect to the general coordinate transformations and the local
Lorentz group leads to the conservation law of energy-momentum (1.45) and of
the total angular momentum (1.47).

The important feature of the Einstein-Cartan theory (ECT) is the algebraic
nature of the equation (1.49), which will be called a Palatini equation (some-
times it is also called a Cartan equation). As a consequence of such an algebraic
coupling, the torsion disappears in the absence of a spinning matter, which con-
firms Cartan’s prediction [19]. Furthermore, the entire Einstein-Cartan theory
can be written in terms of the Riemann-Einstein objects. Indeed, using the
expression for the connection (1.12), we can explicitly separate the Riemann-
Einstein part in the action

SECT =
1

2κc

∫
d4x
√
gR (Γ) =

1

2κc

∫
d4x
√
g
(
R+ 2Tαµ[αT

µβ
β]

)
(1.50)

plus the surface integral.
Next, we solve eq. (1.49) expressing the torsion in terms of the spin

Qλµν = κc

(
Sλµν +

1

2
δλµSν −

1

2
δλνSµ

)
,

with Sµ = Sλµλ. Inserting this into (1.50), we obtain the action

SECT =

∫
d4x
√
g

(
1

2κc
R+

1

c
Leff
m

)
, (1.51)

where the effective matter Lagrangian reads

Leff
m = Lm − κc2

[
SµSµ +

1

2
Sµνλ (Sνλµ + Sλµν + Sµλν)

]
.

The field equations (1.48) and (1.49) are then recast into

Gµν = κT eff
µν , (1.52)

where the effective metrical tensor of the energy-momentum of matter

Tµνeff =
2
√
g

δ(
√
gLeff

m )

δgµν

satisfies the covariant conservation law, Tµνeff ;ν = 0, of GR [188].
Thus, the spin-torsion interaction in the Einstein-Cartan theory predicts the

appearance of the (effective) matter Lagrangian of the terms describing the
contact spin-spin interaction, which is κc2 times smaller than the interaction
between the energy-momentum and the metric in GR. The change of the matter
current Tµν −→ T eff

µν affects the spacetime metric via the effective Einstein equa-
tion (1.52). In those areas, where the spinning matter is absent, the influence
of the spin-spin interaction manifests itself through the matching conditions for
the spin discontinuity at the boundary [21].



2
Canonical formalism of gravity theories

2.1. Systems with singular Lagrangians

The gravitational field theory is invariant with respect to the group of general
coordinate transformations, as a result, the dynamics of this field is essentially
hidden due to the arbitrary choice of a coordinate system. The dynamical con-
tents of any theory as such (i.e., the calculation of the number of independent
degrees of freedom, their explicit selection from the full set of the field vari-
ables, the construction of such dynamical characteristics as the energy, etc.)
can be revealed by the methods of the canonical formalism. The solution of the
problems listed above is necessary for the canonical quantization of the theory,
which leads to the unitary S-matrix.

Therefore, here and in the next chapter, we will study the specific features
of the Hamiltonian gravitational dynamics. We begin with considering of the
dynamical consequences of the invariance of the theory with respect to the local
group.

Degeneracy of the dynamical system as a result of invariance with
respect to the local group

Let us find out what are the dynamical consequences of the invariance of an
action of the field system ΦA(x) (A = 1, . . . , k)

S[Φ] =

∫
d4xL[ΦA(x), ∂µΦ

A(x)], (2.1)
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with respect to transformations of the field variables and of the spacetime co-
ordinates, constituting the local group:

ΦA(x) −→ Φ′A(x′), xµ −→ x′
µ
(x).

If

∆fΦA(x) ≡ Φ′A(x)− ΦA(x), (2.2)

∆fxµ(x) ≡ x′µ − xµ (2.3)

are the infinitesimal transformations of this m-parameter local group with the
local infinitesimal parameters fα(x) (α = 1, . . . ,m), then the condition of the
invariance of the action (2.1) reads∫

d4x

{(
∂L
∂ΦA

− ∂µ
∂L

∂∂µΦA

)
∆fΦA

+ ∂µ

(
L∆fxµ +

∂L
∂∂µΦA

∆fΦA
)}

=0. (2.4)

Let us consider such transformation parameters that the variations (2.2) and
(2.3) vanish outside some four-dimensional spacetime area Ω, as well at its
boundary. After the integration in (2.4), we then obtain∫

Ω

d4x

(
∂L
∂ΦA

− ∂µ
∂L

∂∂µΦA

)
∆fΦA = 0. (2.5)

It is convenient to introduce the new condensed notation of the field variables
ΦA(x) ≡ Qi(t), where the dependence on time t is explicitly distinguished, and
the generalized index i = (A,x) labels both the discrete internal components
and the spatial coordinates. The summation over i thus will also imply an
integration over x =

{
x1, x2, x3

}
.

We assume that the group transformations are arbitrarily complicated local
functions of the fields, of the group parameters fα, and of their spacetime
derivatives up to the N -th order. The parameters of the group fα will also be
labeled by the condensed indices α, including the spatial coordinates.

Then we can recast (2.2) into

∆fQi(t) =

N∑
n=0

(n)
a iα ∂0

nfα(t), ∂0 ≡
∂

∂t
, (2.6)

where
(n)
a iα are local in time functions of the fields (n denotes the order of time

derivative in the transformation), and summation over α in field systems also
implies integration over x.

Substituting (2.6) into (2.5) and integrating by parts, we obtain∫
dt fα(t)

N∑
n=0

(−1)n ∂0
n

{(
∂L

∂Qi(t)
− ∂0

∂L

∂Q̇i(t)

)
(n)
a iα

}
= 0,
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where Q̇i ≡ ∂Qi/∂t, and L =
∫
d3xL is system’s Lagrange function. Due to

arbitrariness of fα(t), this yields the following identity:

N∑
n=0

(−1)n ∂0
n

{(
∂L

∂Qi(t)
− ∂0

∂L

∂Q̇i(t)

)
(n)
a iα

}
= 0. (2.7)

We will consider the second-order theories, then the following relation is fulfilled

∂L

∂Qi
− ∂0

∂L

∂Q̇
i

= − ∂2L

∂Q̇
i
∂Q̇

k
Q̈k + Fi

(
Qk, Q̇k

)
, (2.8)

where the functions F(Qk, Q̇k) do not depend on the second derivatives Q̈i(t).
Using (2.8) in (2.7), we obtain the identity that is valid for any Qi(t):

(N)
a i
α

∂2L

∂Q̇
i
∂Q̇

k
∂0
N+2Qk +Wα

(
Q, ∂0Q, . . . , ∂0

N+1Q
)

= 0, (2.9)

where the functions Wα do not depend on the higher derivatives ∂0
N+2Qi(t).

Due to arbitrariness of Qi(t), both terms in (2.9) are identically zero, since
the derivatives of the (N + 2)-th order do not depend on the lower derivatives.

Therefore,
(N)
a i
α

∂2L

∂Q̇
i
∂Q̇

k = 0 and the matrix of the second derivatives of the

Lagrangian with respect to the velocities is degenerate:

det
∂2L

∂Q̇
i
∂Q̇

k
= 0, rank

(
∂2L

∂Q̇
i
∂Q̇

k

)
= k −m. (2.10)

The Lagrangians with the property (2.10) are called singular, and the related
systems are called degenerate. The equations of motion for such systems

∂2L

∂Q̇i∂Q̇k
Q̈k −Fi

(
Q, Q̇

)
= 0 (2.11)

cannot be solved with respect to the higher derivatives, and m linear combina-
tions of these equations, containing only the coordinates Qi and their velocities
Q̇i, vanish on the extremals of the degenerate action (2.1):

(N)
a i
αFi

(
Q, Q̇

)
= 0. (2.12)

The latter means that the initial data for the coordinates and the velocities
cannot be fixed independently.

Before we consider the Cauchy problem and analyse how to solve the equa-
tion (2.11) of an arbitrary degenerate system, it is instructive to illustrate our
derivations by the two examples of systems with the singular Lagrangians: the
relativistic particle, and Maxwell’s electrodynamics.
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The action S = m
∫
dt
√
−ẋµẋµ of a relativistic particle

{
Qi (t) ≡ xµ(t)

}
of

the mass m is invariant with respect to the transformations

∆t = f(t), ∆xµ =
(0)
a µf,

(0)
a µ = xµ(t),

and its Lagrangian L = m
√
−ẋµ ẋµ satisfies the relation ẋµ ∂2L/∂ẋµ∂ẋν = 0.

Interesting property of the relativistic particle action is the vanishing of its
Hamiltonian, H = ẋµ (∂L/∂ẋµ)− L ≡ 0.

The electromagnetic field action with
(
Qi ≡ Aµ(t,x)

)
, S = − 1

4

∫
d4xFµνF

µν ,
Fµν = ∂µAν − ∂νAµ, is invariant with respect to the Abelian one-parameter
group ∆fAµ = ∂µf(x), so that

(1)
a µ(x,x′) = δ0

µδ(x− x′), (2.13)

and the degeneracy condition (2.10) of the system reads∫
d3x′

(1)
a µ(x,x′)

∂2L

∂Ȧµ(x′)∂Ȧν(y)
=

∂2L

∂Ȧ0(x)∂Ȧν(y)
= 0.

Canonical formalism for systems with singular Lagrangians

Thus far, it is shown that the invariance of a dynamical system with respect to a
local group leads to its degeneracy. The dynamics of the system and its Cauchy
problem are usually studied within the framework of the canonical formalism,
so let us consider the specific features of the canonical formalism for systems
with singular Lagrangians.

Define the momenta conjugated to the canonical coordinates Qi:

Pi =
∂L

∂Q̇i
. (2.14)

Since the matrix of the second derivative of the Lagrangian with respect to
the velocities is degenerate (2.10), the equations (2.14) cannot be solved with
respect to the velocities in terms of the momenta. Technically, this means that
not all k momenta Pi can be taken as independent arguments. Looking at
the rank of the matrix ∂2L/∂Q̇i∂Q̇k, we conclude that there are m identities
connecting momenta and coordinates,

ϕµ (Q,P) = 0. (2.15)

These identities are called the primary constraints [40]. Now let us consider the
function of the three sets of arguments Qi, Q̇i and Pi:

H0 = Pi Q̇i − L(Qi, Q̇i). (2.16)

Let us calculate the variation of this quantity with all the arguments treated
as independent ones, and then put it in the space of the variables (Q, Q̇,P) on
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the surface defined by the equation (2.14):

δH0
Pi = ∂L/∂Q̇i

= δPi Q̇i −
∂L

∂Qi
δQi.

It is obvious that even in spite of the absence of the functional independence
of the arguments Q and P, one can express the quantity (2.16) as a function
of coordinates and momenta only, which on the surface (2.14) does not depend
on the velocities Q̇i:

H0 (Q,P) =
{
Pi Q̇i − L(Q, Q̇)

}
Pi = ∂L/∂Q̇i

. (2.17)

We now develop the first-order variational formalism with the Hamiltonian
(2.17). For non-degenerate theories with the independent coordinates and mo-
menta, this formalism is based on the variation with respect to Q and P of the
action

S [Q,P] =

∫
dt
{
Pi Q̇i −H0(Q,P)

}
.

In the theories with singular Lagrangians, it is necessary to study a conditional
extremum of the same functional subject to the conditions defined by the con-
straints (2.15). This is achieved by the inclusion of the constraints with the
Lagrange multipliers λµ into the action functional,

S [Q,P, λ] =

∫
dt
{
Pi Q̇i −H0(Q,P)− λµϕµ(Q,P)

}
. (2.18)

The equations, obtained by the variation of this action, read as follows:

Ṗi = {Pi, H0}+ λµ {Pi, ϕµ} ,
Q̇i =

{
Qi, H0

}
+ λµ

{
Qi, ϕµ

}
,

ϕµ = 0,

(2.19)

where { , } is the Poisson bracket determined by the phase variables (Q,P).
However, it is unclear that the total Hamiltonian in the action (2.18) is writ-

ten correctly, i.e., that all the occurring constraints are taken into account. In-
deed, the condition of consistency of the constraints (2.15) with the equations
of motion (2.19) means that

ϕ̇µ = 0, {ϕµ, H0}+ λα {ϕµ, ϕα} = 0. (2.20)

Demanding that this equation is satisfied, we have one the following options:
1. det {ϕµ, ϕα} 6= 0. Then the equations (2.20) explicitly determine the

Lagrange multipliers, and substituting the latter into (2.19) we get the system
of equations that have a unique solution. The time dependence of the field
variables Qi(t) is then uniquely defined.
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2. Among the set (2.15), there are such constraints ϕq (q = 1, . . . , r ≤ m)
that {ϕq, ϕα} = Cµqαϕµ, where Cµqα are some functions of the phase coordinates.
Then det {ϕµ, ϕα}ϕ=0 = 0 and the equations (2.20) yield new r equations

χq = 0, χq (Q,P) ≡ {ϕq, H0} ,

which are called the secondary constraints. Since the phase coordinates must
satisfy these new relations, it is necessary to add them to the action with the
new Lagrange multipliers. Repeating the process, we again obtain one of the
two aforementioned options. Such a sequence of steps can be completed only
as follows. We denote the complete set of N constraints obtained during this
process by

ΨΦ = 0, ΨΦ = (Hα,ΞA), (2.21)

where R constraints Hα satisfy the relations

{Hα, ΨΛ} = CΦαΛΨΦ, α = 1, . . . , R, (2.22)

and the remaining constraints ΞA are numbered by the index A = R+1, . . . , N .
Then

{Hα, H0} = CΦαΨΦ, (2.23)

otherwise the consistency conditions of the form (2.20) would yield new con-
straints, and the procedure would not be completed.

The constraints that satisfy (2.21)-(2.23) are called the constraints of the
first kind. They commute in the sense of the Poisson brackets on the surface of
constraints in the phase space with each other and with the Hamiltonian H0.
One can show that the remaining constraints ΞA satisfy

det {ΞA,ΞB} 6= 0. (2.24)

These are the constraints of the second kind.
The total canonical action takes the following form:

S [Q,P, λ] =

∫
dt
{
PiQ̇i −H0 − λαHα − λAΞA

}
. (2.25)

The condition (2.24) provides the uniqueness of the solution for λA (in terms
of the remaining variables Q,P, λα), while the Lagrange multipliers λα corre-
sponding to the constraints of the first kind Hα remain completely arbitrary.
This manifests the ambiguity in the solving of the equations of motion of a
degenerate system. The origin of this ambiguity lies in the invariance of the
theory with respect to the action of the local group, which leads to system’s
degeneracy. Later we will demonstrate that variations of the undetermined La-
grange multipliers λα correspond to the local group transformations, and that
the constraints Hα are the generators of these transformations in the phase
space.



2.1. Systems with singular Lagrangians 23

We have described the general algorithm of construction of a complete sys-
tem of constraints for the case of an arbitrary degenerate theory. Let us now
specialize to the theories without constraints of the second kind, and give the
form of canonical action (2.25) for this important particular case. We assume
that by an appropriate choice of the field variables, we can recast the primary
couplings (2.15) into a simple form

ϕµ = Pµ, Pµ = 0. (2.26)

This means that the velocities Q̇µ do not appear in the Lagrangian at all.
Let us then exclude (Qµ,Pµ) from the complete set (Q,P) =

(
Qµ,Pµ; qi, pi

)
,

i = 1, . . . , n. Since the Lagrangian does not depend on Q̇µ, the variables Qµ

play the role of the Lagrange multipliers, Qµ = λµ, and the canonical action is
written as1

S [ q, p, λ ] =

t1∫
t0

dt
{
pi q̇

i −H0(q, p)− λµHµ(q, p)
}
, (2.27)

where for definiteness we introduced the time parameters t0 and t1 which de-
termine the initial and the final Cauchy hypersurfaces.

The conservation of the initial constraints (2.26) is a condition of stationarity
of the action (2.26) with respect to the variation of λµ, or

Hµ (q, p) = 0. (2.28)

Let us consider degenerate systems with the canonical action of the form (2.27),
where Hµ(q, p) are the constraints of the first kind, that satisfy the so-called
involution relations:

{Hµ, Hν} = UαµνHα, {Hµ, H0} = V νµHν . (2.29)

Here Uαµν and V νµ are some quantities depending generally on the phase vari-
ables, and the Poisson brackets are taken in terms of the phase variables of the
reduced phase space (q, p).

The equations of motion, obtained from the action (2.27) for the phase vari-
ables Φ(q, p), read as follows:

Φ̇ = {Φ,H0}+ λµ {Φ,Hµ} . (2.28a)

Varying the Lagrange multipliers arbitrarily, one can obtain different solutions
Φ(t) even for the same initial conditions. This ambiguity corresponds to an

1The linear dependence of the complete Hamiltonian H = H0 + λT on λ is explained by
the relation rank ∂2H/(∂λµ∂λν) = 0, the violation of which would mean that it is possible

to exclude part of λµ in terms of the other variables, in contradiction with the number m of

the constraints.
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uncertainty with which one can fix the state of a physical system, which is
invariant with respect to the action of a local group. If Q(t) =

(
λµ(t), qi(t)

)
is a

solution of the equations of motion of such system, then in view of (2.2), (2.3)
and (2.6), the following functions will satisfy the same equations

λ′
µ
(t) = λµ(t) + ∆fλµ(t),

q′
i
(t) = qi(t) + ∆fqi(t), (2.29)

where the infinitesimal transformations of the group are defined by the formulas
(2.6) with some parameters fα. Thus, the physical state in the phase space
and in the λ-multipliers’ space at a moment t is determined up to a group
transformation (2.29). The functions Q(t), as such, do not have a direct physical
meaning. Only the equivalence classes of the field configurations connected by
group transformations (2.2)-(2.3) or the group invariants have physical meaning.

One can verify that the canonical action (2.27) is invariant with respect to
transformations of the phase coordinates and λ-multipliers of the following form:

δFqi =
{
qi, Hµ

}
Fµ, (2.30)

δFpi = {pi, Hµ}Fµ, (2.30a)

δFλµ = Ḟµ − Uµαβλ
αFβ − V µα Fα, (2.31)

with some infinitesimal parameters Fµ. It turns out that there is a one-to-one
correspondence between the parameters Fµ and fα, so that the transformations
(2.30), (2.31) are the realizations of the group transformations (2.29) in the
configuration space, under the condition that the transformations (2.30) and
(2.31) are calculated on the extremal values of the momenta p0

i = pi(q, q̇, λ).
The extremal values of the momenta are obtained as a result of solving the
equations

q̇i =
∂H0

∂pi
+ λµ

∂Hµ

∂pi

with respect to pi in terms of variables (q, q̇, λ). Therefore, the constraints of the
first kind Hµ(q, p) are generators of the phase transformations corresponding
to the local group transformations.

Since the dynamics of the physical state is determined not by a particular
set of the functions (q, p), but by the entire equivalence class of the phase
coordinates connected by the transformations (2.30) and (2.30a), we choose the
evolution of one representative from this class to describe the dynamics. This
is done by means of imposing the additional conditions

χα(q, p) = 0, (2.32)

which break the invariance with respect to the transformations (2.30), (2.30a).
Obviously, the number of gauge conditions should be equal to the number of
constraints of the first kind or the number of parameters m of the local group,
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and the requirement that no nonzero Fβ would leave the gauge conditions
(2.32) invariant, δFχα = {χα, Hβ}Fβ = 0, with respect to the transformations
(2.30)-(2.30a), implies the invertibility of the following Faddeev-Popov matrix:

detJαβ 6= 0, Jαβ = {χα, Hβ} . (2.33)

Following the choice of a gauge, the system becomes non-degenerate and is
described by the action

S [q, p, ξ] =

∫
dt (piq̇

i −H0 − ξaψa), (2.33a)

where the complete set of constraints and the corresponding Lagrange multi-
pliers are defined as

ψa =
(
Hα, χ

β
)
, ξa = (λα, πβ).

The system of constraints ψa is of the second kind, because due to (2.33), the
matrix

Qab =
{
ψa, ψb

}
, detQab = − (det {χα, Hβ})2

(2.34)

is non-degenerate. The Lagrange multipliers can be found from the condition
of conservation of the constraints in time

dψa

dt
=
∂ψa

∂t
+ {ψa, H0}+ ξb

{
ψa, ψb

}
= 0,

which yields

ξa =
{
ψb, H0

}
Q−1
ba +

∂ψb

∂t
Q−1
ba , (2.35)

where Q−1
ba is the inverse matrix to (2.34). In general case, the additional condi-

tions (2.32) may explicitly depend on time. Hence, there is a ∂ψa/∂t contribu-
tion in (2.35). With an account of (2.35), the equations of motion for the phase
variables Φ take on the form:

Φ = {Φ,H0}D − {Φ,ψ
a}Q−1

ab

∂ψb

∂t
, (2.36)

where { , }D is the so-called Dirac bracket [40] defined as

{A,B}D = {A,B} − {A,ψa}Q−1
ab

{
ψb, B

}
. (2.37)

Since the evolution of the physical system is subject to the set of 2m con-
straints (2.28) and (2.32), the number of independent (physical) degrees of
freedom equals (2n−2m)/2 = n−m. These degrees of freedom Φ∗ =

(
q∗A, p∗A

)
,

A = 1, . . . , n−m parameterize the initial phase coordinates Φ = (qi, pi) on the
subspace of the full set of constraints

Φ = Φ(Φ∗) : qi = qi(q∗, p∗), pi = pi(q
∗, p∗), Ψa

(
Φ(Φ∗)

)
≡ 0, (2.38)
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so that the following relation holds∫
dt
(
piq̇

i −H0(q, p)
) ∣∣∣∣

Φ=Φ(Φ∗)

=

∫
dt
(
p∗Aq̇

∗A −Hphys(q
∗, p∗)

)
. (2.39)

This relation may be interpreted as a definition of the physical Hamiltonian
Hphys(q

∗, p∗) and of the canonical action in terms of (n −m) physical degrees
of freedom:

S [ q∗, p∗] =

∫
dt
(
p∗Aq̇

∗A −Hphys(q
∗, p∗)

)
. (2.40)

The equations obtained by varying of this action are equivalent to (2.36), since
the action (2.40) is the same functional (2.33a), where the equations of the con-
straints are solved in terms of the smaller number of variables (q∗, p∗). There-
fore, each gauge choice (2.32) corresponds to a set of (n−m) physical degrees
of freedom, represented by the canonical variables (q∗, p∗). One can generate
a change of the gauge δχα(q, p) by transformations (2.30), (2.30a) with the
specially chosen parameters Fµ (see Chapter 7).

Let us illustrate the above theory on the examples of the relativistic particle
and the theory of electromagnetic field. The momenta of the relativistic particle

pµ =
∂L

∂ẋµ
= − mgµν ẋ

ν

√
−ẋαẋα

satisfy the constraint
H ≡ gµνpµpν −m2 = 0, (2.41)

which due to the identical vanishing of Hamiltonian H0 is the constraint of the
first kind. Let us choose the following gauge:

χ ≡ x0 − t = 0. (2.42)

The condition (2.33) is fulfilled: {H,ϕ} = 2p0 6= 0. Using these quantities in
(2.34) and (2.36), we obtain the equations of a straight-line motion of the free
relativistic particle

ẋi =
pi

p0
, ṗi = 0.

Taking into account the vanishing of the Hamiltonian H0, the action (2.33a)
for the relativistic particle can be written in the form

S [xµ, pµ, λ, π] =

∫
dt {pµẋµ − λT − πχ} .

Choosing the spatial coordinates xi = q∗ and the momenta pi = p∗ as the
physical degrees of freedom, and taking (2.42) into account, we arrive at the
canonical action

S [x, p] =

∫
dt
(
piẋ

i −
√
m2 + p2

)
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with the Hamiltonian Hphys =
√
m2 + p2 obtained as a result of solving the

constraint (2.41) with respect to the momentum p0 = −Hphys.
For the electromagnetic field, the action (2.33a) can be written as

S
[
Ai, p

i, A0

]
=

∫
dtd3x

{
piȦi −

(
1

2
pip

i +
1

4
FikF

ik

)
− (−A0)∂ip

i

}
,

where the momentum pi conjugated to the vector potential A1 is equal to

pi = ∂0Ai − ∂iA0,

and Fik = ∂iAk − ∂kAi. The role of the phase variables is played by the set
(Ai, p

i), and the zeroth component of the vector potential −A0 = λ is an unde-
termined Lagrange multiplier for the first-kind constraint H = ∂ip

i commuting
in the sense of the Poisson brackets with the Hamiltonian

H0 =

∫
d3x

(
1

2
pip

i +
1

4
FikF

ik

)
. (2.43)

In accordance with the general procedure, we impose the Coulomb gauge

χ = 0, χ ≡ ∂iAi. (2.44)

The equation for the Lagrange multiplier A0 (2.35) reduces to ∆A0 = 0 with
∆ = ∂i∂

i, hence we find A0 = 0 for the zero boundary conditions, and the
equations of motion take the following form: Ȧi = pi and ṗi = −∆Ai, equiva-
lent to Maxwell’s equations in the gauge (2.44). The dynamically independent
components of the vector potential q∗A (A = 1, 2) are obtained by decomposing

Ai(x, t) into the two transversal polarizations Ai
(A)(x, t) of the electromagnetic

field satisfying (2.44).

The Hamilton-Jacobi theory of degenerate systems

Let us consider some solution Φ0(t) (obtained in an arbitrary gauge) of the
equations of motion (2.28a) and insert it into the action (2.27). The action
(2.27) calculated on its own extremal Φ0(t) becomes the function of initial and
final values of the phase coordinates q0 ≡ q(t0) and q1 ≡ q(t1):

S [Φ, λ]
Φ = Φ0(t)

= S(q1, t1|q0, t0). (2.45)

By denoting the current value of time t1 = t and the phase coordinates q1 = q,
we treat the extremal action (2.45) as a function of these variables, S(t; q).
Using the variation procedure, one can show that this function is a potential of
the field of the phase momenta p = p(t1):

pi =
∂S

∂qi
. (2.43a)
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Since the extremal momenta and the coordinates at any time satisfy the
constraints (2.28), the m constraint equations are fulfilled for the function of
the action S(t; q):

Hµ

(
q,
∂S

∂q

)
= 0. (2.44)

Similarly, from the variational procedure it follows that S(t; q) satisfies the
Hamilton-Jacobi equation with the complete Hamiltonian H = H0 + λµHµ.
However, in view of (2.44) this equation reduces to

∂S

∂t
+H0

(
q,
∂S

∂q

)
= 0. (2.45)

The equations (2.44) and (2.45) are the basic equations of the Hamilton-
Jacobi theory of the systems with constraints. A solution of this system of equa-
tions, i.e., its complete integral, contains n−m parameters αA (A = 1, . . . , n−m)
[a solution of the equation (2.45) depends on n nontrivial integration constants,
and the remaining m equations (2.44) impose m relations on them]. Thus, the
function S depends on (n−m) additional parameters, the number of which is
equal to the number of dynamically independent degrees of freedom q∗:

S = S(t; q, α). (2.46)

Such a number of parameters labeling the solutions of the system of equations
(2.44), (2.45) does not contradict to the fact that the function S in (2.45)
depends on the additional (n + 1) quantities (q0; t0), since the function (2.45)
satisfies the same (m+1) equations (2.44), (2.45) with respect to the arguments
(q0; t0) and the actual number of independent parameters reduces to (n+ 1)−
(m+ 1) = n−m.

We will show that the solution of the equations of our system with constraints
for some set of gauges χµ(q, p) can be found from the known action function
S(t; q, α) by solving the following system of equations:

∂S

∂αA
= βA, (2.47)

χµ
(
q,
∂S

∂q

)
= 0, (2.48)

where βA are some m arbitrary parameters.
Let us start with demonstrating that if the gauge χµ satisfies (2.33), the

system of equations (2.47), (2.48) admits the unique solution qi = qi(t;α, β).
Indeed, the solvability condition of this system means the absence of zero eigen-
vectors of the matrix Bki, k = (A,µ),

BAi =
∂2S

∂αA∂qi
, Bµi =

∂χµ

∂qi
+
∂χµ

∂pk p = ∂S
∂q

∂2S

∂qk∂qi
.
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Since the equations (2.44) are fulfilled identically for any αA and qi if S is the
solution (2.46), then by differentiating (2.44) with respect to αA and qi, we
obtain

∂Hµ

∂pi p = ∂S
∂q

∂2S

∂qi∂αA
= 0, (2.49)

∂Hµ

∂pk p = ∂S
∂q

∂2S

∂qk∂qi
= − ∂Hµ

∂qi p = ∂S
∂q

. (2.50)

Hence, ∂Hµ/∂pi|p= ∂S/∂q are the m zero vectors of the matrix ∂2S/∂qi∂αA,
and consequently their linear combination with non-zero coefficients γµ is the
zero vector of Bki. However, in view of (2.50), we have

γα
∂Hα

∂pi p = ∂S
∂q

Bµi = γα {χµ, Hα}
p = ∂S

∂q

,

whence it follows that the matrix Bki is non-degenerate because of (2.33).
Now we show that the solution of the system of equations (2.47), (2.48)

satisfies (2.28a) with the Lagrange multipliers (2.35).
By differentiating (2.47) with respect to time, we find

∂

∂αA
∂S

∂t
+

∂2S

∂qi∂αA
q̇i = 0.

On the other hand, differentiation with respect to αA of the Hamilton-Jacobi
equation (2.45) gives

∂

∂αA
∂S

∂t
= − ∂H0

∂pi p = ∂S
∂q

∂2S

∂qi∂αA
,

which yields

∂2S

∂qi∂αA

(
q̇i − ∂H0

∂pi p = ∂S
∂q

)
= 0.

Consequently, the expression in the parentheses is the linear combination of the
zero vectors of the matrix (∂

2
S/∂qi∂αA) with arbitrary coefficients λµ:

q̇i =

(
∂H0

∂pi
+ λµ

∂Hµ

∂pi

)
p = ∂S

∂q

. (2.51)

In a similar way, the equation for pi is obtained by differentiating of (2.45) with
respect to time:

ṗi =
∂2S

∂qi∂qk
q̇k +

∂

∂qi
∂S

∂t
,

from which, using (2.45), (2.50) and (2.51), we obtain

ṗi = − ∂H0

∂qi
− λµ ∂Hµ

∂qi
.
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Thus, by requiring the preservation of the gauges (2.48) in time, one can derive
the expression (2.35) for the Lagrange multipliers.

Thus far, a solution of the system of equations (2.48), (2.47), where S satisfies
the Hamilton-Jacobi equations (2.44), (2.45), fully solves the Cauchy problem
in the gauge (2.32). In addition, it is obvious that the 2m variables (αA, βA)
are in one-to-one correspondence with the initial values of the dynamically
independent phase variables (q∗, p∗).

2.2. Peculiarities of the canonical formalism
in curved spacetime

To construct the canonical formalism of a dynamical system, one needs to ex-
plicitly single out a coordinate which plays the role of time.

It is easy to choose the time in relativistically invariant theories in the flat
spacetime. Identifying time with the coordinate x0 of any Lorentz coordinate
system, so that the tangent vector to the x0-axis is the Killing vector of the flat
spacetime, one can construct the canonical formalism of the theory.

In the curved spacetime, the situation is much more complicated. In general,
there are no time-like Killing vectors, along which the spacetime properties are
homogeneous. Hence, in each coordinate system, it is impossible to select a
unique time. In addition, the physical theory is invariant with respect to the
group of general coordinate transformations (2.2), (2.3)

∆fΦA(x) = LfΦ
A(x), ∆fxµ(x) = fµ, (2.52)

where LfΦ
A(x) is the Lie derivative (1.43a) of the tensor field ΦA(x), containing

the term fµ∂µΦ
A(x):

LfΦ
A(x) = fµ∂µΦ

A(x) + (∂µf
ν)Ων

µA
B Φ

B(x). (2.53)

Thus, under any transformation of the form (2.52), the question arises, how
to define the time in new coordinate systems when it was already introduced
somehow in one of them. In view of the locality of the group (2.52), the time
should be defined locally, i.e., its definition may be changed in the local vicinity
of a point without changing it in the rest of the spacetime.

Therefore, we obtain a coordinate-free definition of time as a system of the
space-like hypersurfaces of the constant parameter

t = τ(x), (2.54)

where τ(x) is a scalar function of coordinates.
If we also want to define a three-dimensional coordinate chart on each hyper-

surface, this can be done with the help of the four functions

xα = eα(x, t) (2.55)
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of the three-dimensional coordinates x = {xa} and the time t, so that their
substitution in (2.54) yields an identity. Since the canonical formalism on the
curved spacetime essentially relies on its (3 + 1)-decomposition (2.55), we will
study its geometrical properties now.

2.3. Geometry of (3 + 1)-decomposition of spacetime

The parameters xa represent the coordinate system on the hypersurface (2.55).
Let us define the normal basis on the hypersurface by the triad of the tangent
vectors eαa and the normal nα, such that

eαa ≡ ∂aeα(x, t), nαe
α
a = 0. (2.56)

The normal vector nα determines the type of a surface:

nαn
α = σ, σ = ±1. (2.57)

The value σ = −1 for space-like and σ = +1 for time-like surfaces.
It is natural to define the three-dimensional metric of the hypersurface

gab(x) = gαβ (e(x, t)) eαae
β
b .

Then any 4-vector λα can be decomposed with respect to the normal basis:

λα = nαλ⊥ + eαa λ
a,

λ⊥ = σnαλ
α, λa = eaα λ

α, (2.58)

where
eaα ≡ gαβgabe

β
b .

The following identities can be immediately derived:

eaαe
α
b = δab , eαae

a
β = δαβ − σnαnβ .

The three-dimensional Riemannian connection on the hypersurface can be
introduced via the three-dimensional covariant derivative of a 3-vector λa:

λa|b ≡ (λceαc );βe
a
αe
β
b ,

which yields the three-dimensional connection

γabc = eαc; be
a
α. (2.59)

Here we use the following notation for the four-dimensional covariant derivatives
(more exactly, for their projections):

λα;b ≡ eβb λ
α

;β , λa;b ≡ eαae
β
b λα;β ,

λ⊥;a ≡ σnβeαaλβ;α, λa;⊥ ≡ σnαeβaλβ;α,

λ⊥;⊥ ≡ nαnβλα;β .

 (2.60)
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We define the extrinsic curvature Kab of the hypersurface as

Kab = −na;b. (2.61)

Due to the second equation (2.56), Kab = eαa;bnα = Kba. Comparing (2.61) and
(2.59), we see that Kab and γcab are the projections of the quantity eαa;b on the
normal basis. In view of (2.58), this yields the Gauss-Weingarten formula

eαa;b = σKab n
α + γcab e

α
c . (2.62)

Let us consider the following vector Nα and its projections on the normal
basis:

Nα =
deα(x, t)

dt
, N = σnαN

α, Na = eaαN
α. (2.63)

We are interested in the deformation of the normal basis when it moves in the
four-dimensional spacetime along the vector (2.63). Taking into account that

∂βe
α
a

deβ(x, t)

dt
= ∂a

∂eα(x, t)

dt
,

we obtain for the quantity ∇Neαa ≡ eαa;βN
β the following expression

∇Neαa =
(
N|a + σKabN

b
)
nα + (N b

|a −NKb
a)eαb . (2.64)

In the derivation we used the decomposition (2.58) for the vector (2.63) and
the Gauss-Weingarten formula (2.62).

Taking into consideration (2.56) and (2.57), it is possible to obtain from (2.64)
the equation for normal vector deformation

∇Nnα = − (σN|a + KabN
b)eaα. (2.65)

Using (2.64), we obtain the relation between the extrinsic curvature of the
hypersurface and the velocity of the change of the metric

ġab = ∇Ngab = − 2NKab + 2N(a|b). (2.66)

Let χα(x) be a vector field in the spacetime with a given hypersurface system
(2.55), the projections of which on the normal basis are χa and ϕ⊥. Let us
analyze how the covariant derivatives of the vector ϕα are related to the three-
dimensional covariant derivatives of its projections. Calculating the covariant
derivative of the projection ϕ⊥ = σnαϕα along the normal vector component
(2.63) nβN , we have

δ⊥ϕ⊥ ≡ Nnβ∇βϕ⊥,
Nnβ∇β (ϕ⊥) = −N|aϕa + σϕ⊥;⊥N,

from which
Nϕ⊥;⊥ = σδ⊥ϕ⊥ + σN|aϕ

a. (2.67)
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Doing the same with ϕa = eaαϕ
α, we obtain

Nϕa;⊥ = σδ⊥ϕa + σKb
aϕbN − ϕ⊥N|a. (2.68)

The meaning of the operation δ⊥ is that it describes the increment caused by
the displacement which is purely orthogonal to the hypersurface and is equal
to nαN .

Now let us consider the displacements which are tangent to the hypersurface,
δ||ϕ⊥ and δ||ϕa. From the point of view of the dependence of the projections of
the fixed vector χα on the normal basis on the embedding of the hypersurface
into the four-dimensional spacetime (2.55), ϕ⊥ and ϕa are functionals of eα(x).
Then

δ||ϕa ≡
∫
d3y (N b (y) eαb (y))

δϕa (x) [e]

δeα(y)
(2.69)

is nothing but the Lie derivative of the vector field ϕa(x) along the vector
Na(x):

δ||ϕa (x) = LNϕa(x). (2.70)

Indeed, the expression (2.69) corresponds to the variation of the form ϕa(x)
under the displacement of the three-dimensional coordinate chart x = {xa} on
the vector N = {Na}, from which (2.70) follows.

On the other hand, since ϕa(x) is a four-dimensional scalar, the following
equation is fulfilled

δ||ϕa = ∇Nϕa
Nα = eαaN

a
,

and hence, taking the equation (2.64) into account, with N = 0, one can derive

δ||ϕa = KabN
bϕ⊥ +N b

|aϕb + ϕa;bN
b.

Comparing with the Lie derivative (2.70), LNϕa = ϕa|bN
b + ϕbN

b
|a, in view of

arbitrariness of the vector field N b(x), we find

ϕa;b = ϕa|b −Kabϕ⊥. (2.71)

A similar analysis for ϕ⊥ gives

ϕ⊥;b = ϕ⊥|b + σKbaϕ
a. (2.72)

The equations (2.67), (2.68), (2.71), and (2.72) are generalized to the projections
of the higher rank tensors in an obvious way, for example:

ϕab;c = ϕab|c −Kacϕ⊥b −Kbcϕa⊥,

where
ϕa⊥ = σnαeβaϕβα, ϕ⊥b = σnαeβbϕαβ .

Using the formulas (2.67)-(2.72), one can establish relations between the var-
ious projections of the four-dimensional Riemann curvature tensor 4Rαβµν and
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the components of the extrinsic curvature of the hypersurface. Projecting the
identity

2ϕa;[µν] = 4Rλαµν ϕλ

on the normal basis with an account of the equations (2.67), (2.68), (2.71), and
(2.72), in view of the arbitrariness of the components ϕ⊥ and ϕa we obtain the
Gauss-Codazzi identities:

4R⊥abc = − 2σKa[b|c],
4Rabcd = 3Rabcd − 2σKb[dKc]a, (2.73)

where 3Rabcd is the Riemann tensor of the extrinsic curvature of the three-
dimensional hypersurface. In a similar way:

N 4Ra⊥b⊥ = δ⊥Kab +NKadKb
d − σN|ab. (2.74)

In order to rewrite the gravitational field Lagrangian in terms of the quantities
of the (3+1)-decomposition of the spacetime, we will use the following relations:

δ⊥(g1/2) = −Ng1/2K, K = Ka
a, g = det gab,

δ⊥(Kg1/2) = ∇N (Kg1/2)− δ||(Kg1/2),

δ||(Kg
1/2) = LN (Kg1/2) = (Kg1/2Na)|a.

With the help of the equations (2.73) and (2.74), we derive

Ng1/2 4R = Ng1/2
{

3R− σ(KabK
ab −K2)

}
+ 2σ∇N (Kg1/2)

− 2(σKg1/2Na + g1/2N |a)|a. (2.75)

2.4. Canonical formalism for the fields
on the curved spacetime

Canonical formalism of the gravitational field

Let us clarify the physical meaning of the quantities of the (3+1)-decomposition.
The system of space-like hypersurfaces in the physical spacetime is characterized
by the value of the parameter σ equal to −1. However, we will keep σ arbitrary
in all formulas below in order to demonstrate the role of the spacetime signature.

The choice of a family of hypersurfaces (2.55) and of the normal vector (2.56)
must satisfy some requirements. It will be mathematically natural to demand
that the orientation of the normal basis

eα(µ) = (eα⊥, e
α
a ) , eα⊥ ≡ nα, (2.76)

coincides with the orientation of the local frames of the four-dimensional coor-
dinate system. Since the metric in the normal basis has the form

eα(µ)gαβe
β
(ν) =

∣∣∣∣∣∣ σ 0

0 gab

∣∣∣∣∣∣ ,
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we find
|4g|1/2det eα(µ) = ±g1/2,

where the upper sign (+) on the right-hand side is fixed by the aforementioned
choice of the orientation of the basis,

nα eβa e
µ
b e

ν
c ηαβµν = ηabc, (2.77)

εαβµν = |4g|1/2ηαβµν , εabc = g1/2ηabc.

The parameter t labels the sequence of the space-like sections of the four-
dimensional spacetime in the causal order of increasing of the physical time.
This means that the function N is positive:

N = σnα
deα

dt
, N > 0. (2.78)

This quantity is called a lapse function. The condition (2.78) fixes the direction
of the normal vector towards the increase of the time parameter t. In particu-
lar, this means that Ndt is the normal interval between the two neighbouring
hypersurfaces corresponding to the moments t and t+ dt.

The shift functions Na characterize the displacement Nadt between the co-
ordinate lines xa on the same two neighbouring hypersurfaces, assuming that
the coordinate system on the hypersurface corresponding to t+ dt, is normally
projected on the hypersurface corresponding to the moment t.

An important condition that the curve determined by the equation xa = const
is time-like leads to inequality

N2 −NaNa > 0 (2.79)

(it was taken into account that σ = −1 in the physical spacetime). The inequal-
ity (2.79) actually means that the coordinate t is time-like and there may be
observers at rest on the three-dimensional coordinate chart on the hypersurface.

Eq. (2.77) yields
|4g|1/2d4x = dtd3xNg1/2, (2.80)

and hence, in view of (2.75), we obtain∫
V

d4x|4g|1/2 4R =

∫ t1

t0

dtd3xNg1/2
{

3R− σ(KabK
ab −K2)

}
+ 2σ

∫
d3xg1/2K

e0

e1

− 2

∫ t1

t0

dtdσa

(
σKNa +N |a

)
. (2.81)

Here V is a four-dimensional spacetime domain bounded by the “cylindrical”
surface, the top and the bottom sides of which are the initial and the final hy-
persurfaces e0 = e(t0) and e1 = e(t1), and the lateral surface ∂V is topologically
a direct product of the two-dimensional sphere ∂e(t) of radius r and the time
axis in the interval t0 ≤ t ≤ t1, ∂V = ∂e(t)× [t0, t1], see Fig. 2.1.
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Figure 2.1: Four-dimensional spacetime domain V bounded by “cylindrical”
surface ∂V = ∂V

⋃
e0

⋃
e1, ∂V = ∂e(t)× [t0, t1].

The last term in (2.81) is a surface integral over the “cylindrical” spatial
asymptotics bounding the space-time “tube” in the interval t0 ≤ t ≤ t1, and
dσa = nadσ is an element of two-dimensional surface ∂e(t) with a unit normal
na. When deriving the form of the second term in (2.81), we took into account
that

∇N (Kg1/2) =
d

dt
(Kg1/2).

The action of the gravitational field [14] that leads as a result of the varia-
tional procedure to Einstein’s equations of the second order, reads as follows2:

S =

∫
V

d4x|4g|1/2 4R−
∫
∂V

dΣσ(2K̃). (2.82)

The surface integral over the boundary ∂V is determined by the extrinsic cur-
vature K̃ given by the formula (2.61), where nα is an outer normal to the
boundary and σ defines the scalar square of the normal vector (2.57). Its role
is to compensate in the volume integral of action (2.82) the terms containing
the derivatives of the metric which are normal to the boundary. This allows
to correctly formulate the boundary value problem for Einstein’s equations as
conditions of the extremum of the action (2.82) (see Chapter 1).

2Hawking considered the gravitational field in the Euclidean spacetime where σ = +1. In

the physical spacetime, his formula is modified, taking into account the metric signature on
the boundary ∂V .
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Substituting (2.81) into (2.82), we obtain the action of the gravitational field
in terms of the (3 + 1)-decomposition:

S =

t1∫
t0

dt

{∫
d3x (Ng1/2L)−H0

}
, (2.83)

L = 3R− σ(KabK
ab −K2). (2.84)

Here the quantity H0 is determined by the surface integral of the extrinsic
curvature of the boundary K̃ over this two-dimensional boundary of the three-
dimensional space,

H0 = 2

∮
dσ̃ g1/2 σK̃ + 2

∮
dσa

(
N |a + σKNa

)
, (2.85)

and the exact form of the measure dσ̃ is obtained if we represent the surface
element dΣ of the “cylindrical” lateral boundary of four-dimensional volume as

dΣ = dtdσ̃, (2.86)

where dσ̃ is some element of the measure on ∂e(t) which is in general different
from dσ.

Let us proceed to the construction of the canonical formalism of the theory
described by the action (2.82). Taking into account that according to (2.66)

Kab =
1

2N
(2N(a|b) − ġab), (2.87)

the action (2.82) is a functional of the set of ten variables (gab, N
a, N) which

replaces the original set of ten metric components gµν . The action (2.82) does
not contain time derivatives of the lapse and shift functions, therefore, N and
Na are the Lagrange multipliers from the point of view of the theory of systems
with singular Lagrangians. In order to verify this, we will bring the action (2.82)
to the form (2.27).

For this purpose, we introduce the canonical momenta πab conjugated to the
3-metric components gab:

πab =
∂(Ng1/2L)

∂ġab
= σGabcdKcd, (2.88)

Gabcd =
1

2
g1/2

(
2gabgcd − gacgbd − gadgbc

)
. (2.89)

Here Gabcd is the so-called covariant DeWitt supermetric [53]. Its contravariant
components are given by the expression

Gabcd =
1

2
g1/2 (gacgbd + gadgbc − gabgcd) , (2.89a)
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GabcdG
cdef = δefab .

The gravitational field Hamiltonian has the following form:

H =

∫
d3x

(
πab(x) ġab(x)−Ng1/2L

)
. (2.90)

Since from (2.89) the extrinsic curvature can be expressed in terms of the
momenta

Kab = σGabcd π
cd, (2.91)

the Hamiltonian (2.90) is recast into

H =

∫
dx3N (µ)H(µ) +H0, (2.92)

where we introduced the unified notation for the lapse and shift functions

N (µ) =
(
N⊥, Na

)
, N⊥ = N, (2.93)

and the quantities Hµ = (H⊥,Ha) are given by the following expressions:

H⊥ = −σGabcd πab πcd − g1/2 3R, (2.94)

Ha = − 2gacπ
cd
|d. (2.95)

Therefore, in terms of the canonical variables the action (2.82) reads

SHE [gab, π
ab, N (µ)] =

t1∫
t0

dt

{∫
d3xπab ġab −H0 −

∫
d3xN (µ)H(µ)

}
, (2.96)

which makes it obvious that the functions N (µ) are the Lagrange multipliers.
The stationary condition of the action (2.96) with respect to variations of

N (µ) leads to the equations

H⊥ = 0, (2.97)

Ha = 0, (2.98)

which are the constraints since they do not contain the time derivatives of the
phase variables.

By direct evaluation of the Poisson brackets, one can show that these con-
straints satisfy the involution relations (2.29):

{H⊥(x),H⊥(x′)} = −σ (Ha(x)∂aδ(x,x
′)−Ha(x′)∂aδ(x

′,x)) ,

{Ha(x),H⊥(x′)} = H⊥(x)∂aδ(x,x
′),

{Ha(x),Hb(x′)} = Hb(x)∂aδ(x,x
′)−Ha(x′)∂bδ(x

′,x).

 (2.99)

Accordingly, we found that (2.97), (2.98) are the first-kind constraints.



2.4. Canonical formalism for the fields on the curved spacetime 39

The canonical equations for the phase variables of the gravitational field are
obtained by the variation of the action (2.96) with respect to gab and πab. The
termH0 in the total Hamiltonian of the system (2.92) is a surface integral, which
does not explicitly contribute to the dynamical equations under the variation.
As a result, the equations of motion in terms of the Poisson brackets take the
following form:

ġab(x) =

∫
d3x′

{
gab(x),H(µ)(x

′)
}
N (µ)(x′), (2.100)

π̇ab(x) =

∫
d3x′

{
πab(x),H(µ)(x

′)
}
N (µ)(x′). (2.101)

Computing the Poisson bracket in (2.100), we obtain the equation (2.66), where
the extrinsic curvature Kab is expressed in terms of the momenta πab via (2.91).
Similarly, one can show that the equation (2.101) is equivalent to the following
set of Einstein’s equations projected on the normal basis: NGab = 0.

The constraints (2.97), (2.98) are also the components of Einstein’s equations

H = 2σg1/2G⊥⊥, (2.102)

Ha = 2g1/2Ga⊥. (2.103)

Therefore, the system of equations (2.100), (2.101) is completely equivalent
to Einstein’s equations Gµν = 0.

One can read from (2.99) the structural functions of the involution relations
(2.29):

U⊥yax,⊥x′ = δ(x,y)∂aδ(x,x
′),

U cyax,bx′ = ∂aδ(x,x
′)δcbδ(y,x)− ∂bδ(x′,x)δcaδ(y,x

′), (2.104)

U byax,⊥x′ = U⊥yax,bx′ = 0,

Uay⊥x,⊥x′ = −σ(gab(x)∂bδ(x,x
′)δ(y,x)− gab(x′)∂0δ(x

′,x)δ(y,x′)).

Since the phase variables in the interior points of the spacetime domain V
commute in the sense of the Poisson brackets with the quantities on the bound-

ary ∂V , the structural functions V
(µ)
(ν) vanish.

Using the results obtained in (2.30), (2.31), one can see that the canonical
action (2.96) is invariant with respect to transformations:

δFπab =

∫
d3x′

{
πab,H(µ)(x

′)
}
F (µ)(x′), (2.105)

δFgab =

∫
d3x′

{
gab,H(µ)(x

′)
}
F (µ)(x′), (2.106)

δFN = Ḟ⊥ −NaF⊥|a +N|aFa, (2.107)

δFNa = Ḟa −
(
Fa|bN b −Na

|bFb
)

+ σ(NF⊥|a −NaF⊥), (2.108)
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with the infinitesimal parameters F (µ) =
(
F⊥,Fa

)
,F⊥ ≡ F⊥. Let us show

that the transformations (2.106)-(2.108), evaluated in the phase space for the
extremal values of the momenta (2.88) [i.e., for the momenta which are the
solution of the equations (2.100) in terms of gab and ġab], are equivalent to the
transformation of the general coordinate group (2.52) with the parameters

fµ = eµ(ν)F
(ν), eµ(ν)F

ν = nµF⊥ + eµaFa, (2.109)

supplemented by the slicing invariance condition (2.55)

∆feα(x, t) = 0. (2.110)

Indeed, in accordance with (2.52) and (2.110),

δFgab = eαae
β
b∆fgαβ = 2fa;b,

and hence using (2.71), (2.91) in combination with the fact that f⊥ = F⊥ and
fa = gabFb, we derive (2.106). Similarly, we have

δFN = σ∆fnαė
α. (2.111)

The variation of the normal vector, caused by the variation of the four-dimension-
al metric, is obtained as a result of the variation of the equations (2.56), (2.57):

∆fnα = − 1

2
σnα(nµnν∆fgµν),

from which
∆fnα = σnαf⊥;⊥. (2.112)

Substituting (2.112) into (2.111) and taking into account (2.67), we obtain
(2.107), since δ⊥F⊥ = Ḟ⊥−F⊥|aNa. In the same way, the last relation (2.108)
is derived.

Thus, we have demonstrated that the transformations (2.106)-(2.108) on the
surface of the extremal momenta realize the general coordinate group (2.51) in
the configuration space. Since this transformation of coordinates

xα −→ xα + fα(x) (2.113)

does not change, in view of (2.110), the form of the functions eα(x, t), they can
be treated as the simultaneous transformation of the coordinate system (2.113)
and the change of the hypersurface system

eα (x, t) −→ eα(x, t)− fα(x)
x = e(x, t)

,

so that the total change of the embedding functions eα(x, t) vanishes.
Consequently, the transformations (2.105)-(2.108) realize the group of the

hypersurface deformations with the parameters (−fα) = −eα(µ)F
(µ). Eq. (2.109)
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shows that H(x) = H⊥(x) is the generator of the hypersurface deformations at
a point x in the direction which is normal to the hypersurface. This generator
is called a superhamiltonian. In a similar way, the constraints Ha(x), which
are called supermomentum components, are the generators of the tangential
deformations or the transformations of the three-dimensional coordinate chart
on the hypersurface. Therefore, in particular,∫

d3x′ {gab(x),Hc(x′)}N c(x′) = LNgab(x).

The Lie derivative of the momentum field is also given by a similar expression.
Let us note that, in contrast to the general coordinate transformations that

constitute the group, the transformations realizing them in the phase space do
not constitute a group since the structural functions (2.104) are not constant
and depend on the phase space variables, i.e., these transformations constitute
the canonical “pseudogroup”. The difference of its structure from the group
structure is that the coefficients of the transition from the parameters fµ to
F (µ) in (2.109) are not constant and depend on the metric. One can show that
the structural functions of the involution relations follow from the structural
constants of the general coordinate group, and vice versa, the involution rela-
tions (2.99) lead to the commutation of the general coordinate transformations
using the Lie brackets of the vector fields.

Geometrodynamics with the matter sources

The system of the gravitational and the matter fields is described by the total
action

S = SHE + Sm. (2.114)

As in Chapter 1, we assume that the interaction of the matter field Ψ with the
gravitation is minimal. Therefore, the action of an unspecified matter field Ψ
has the following form:

Sm =

∫
d4x|4g|1/2Lm(Ψ, Ψ;µ). (2.115)

The construction of the canonical formalism for the system (2.114) starts
with recasting of the matter field action (2.115) into the (3 + 1)-decomposed
form. As before, we need to calculate the projections of the tensor field Ψ on
the normal basis. The complete set of these projections is denoted ϕ: these will
be the phase coordinates in the theory. The momenta p conjugated to them are
determined in a standard way,

p = Ng1/2 ∂Lm
∂ϕ̇

,

where we took into account the rule (2.80) of transition to the new spacetime
coordinates. This procedure recasts the action (2.115) in terms of the canonical
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variables into a form which is similar to (2.83):

Sm [ϕ, p] =

∫
dt

∫
d3x

{
pϕ̇−N (µ)

0

Hm(µ)

}
, (2.116)

where
0

Hm(µ) =
0

Hm(µ)(ϕ, p, gab,Kab) (2.117)

are the superhamiltonian and the supermomenta of the matter field on the
curved spacetime, which are the functions of the phase variables of the three-

dimensional metric and extrinsic curvature Kab. It is important that
0

Hm(µ) does
not depend on the lapse and shift functions, so that the field Hamiltonian in
(2.116) turns out to be a linear function of the latter.

The construction of momenta pab conjugated to the 3-metric of the gravita-
tional field for the system (2.114) leads to the result

pab = πab + P ab, (2.118)

P ab =
∂

∂ġab

(
Ng1/2Lm

)
, (2.119)

where the purely gravitational momentum πab is determined by (2.88). The
quantity P ab (2.119) is an additional contribution to the gravitational field
momentum, due to the presence of time derivatives of the metric in the matter
field Lagrangian. It is clear that the derivatives of the metric enter Lm in
terms of the Riemannian connection in the covariant derivatives Ψ;µ. Since the
variation of the Christoffel symbols with respect to the metric is expressed in
terms of the covariant derivatives of the metric variations δgµν , one can write
the following variational identity:

∂Lm
∂Ψ;µ

δg(Ψ;µ) =
1

2
Pµνσ(δgµν);σ, (2.120)

which also serves as a definition for the tensor Pµνσ (see Chapter 1, Sec. 1.3.).
Substituting (2.120) into (2.119) and using (2.68), we arrive at

P ab =
1

2
g1/2 P ab⊥. (2.121)

For the theories of matter that does not interact with the derivatives of
the metric, i.e., when Ψ;µ = ∂µΨ in the action (2.115) (which is the case, for
example, for the scalar or the electromagnetic fields) one finds Pµνσ = 0, and
the momentum of the gravitational field pab identically coincides with the purely
gravitational momentum

pab = πab. (2.122)

It is convenient to rewrite the superhamiltonian of the matter
0

Hm⊥ by isolating
the term of a special structure as follows:

0

Hm⊥ = Hm + 2KabP
ab. (2.123)
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Now let us plug into (2.114) the expressions (2.96), (2.116) and (2.123), and in
the latter equation we make use of (2.87). Integrating the term − 2N(a|b)P

abg1/2

by parts and dropping an inessential surface integral, we obtain the canonical
action of the gravitating system:

S
[
gab, p

ab, ϕ, p,N (µ)
]

=

t1∫
t0

dt

{∫
d3x

(
pabġab + pϕ̇−N (µ)H(µ)

)
−H0

}
.

(2.124)
Here the superhamiltonian H⊥ and the supermomenta Ha of the total system
are given by:

H⊥ = Hm +H
πab = pab − Pab

, (2.125)

Ha =
0

Hma − 2gabp
bc
|c. (2.126)

The extrinsic curvature Kab should be expressed in these formulas in terms of
the phase variables from the solution of the equation (2.91), taking the following
form:

Kab = σGabcd
[
pcd − P cd(Kef )

]
.

One can show that the superhamiltonian (2.125) and the supermomenta
(2.126) satisfy the involution relations{

H(µ), H(ν)

}
= U

(α)
(µ) (ν)H(α), (2.127)

where the Poisson brackets are defined for the complete set of the phase vari-
ables gab, π

ab, ϕ and p, and with the same structural functions as for the pure
gravitation3. Consequently, H(µ) are the first-kind constraints and they are gen-
erators of the pseudogroup of the space-like hypersurface deformations, consid-
ered in the previous section, that now acts in the total space of the variables
gab, p

ab, ϕ, p;Φ = (gab, p
ab, ϕ, p),

δFΦ =

∫
d3x′

{
Φ,H(µ)(x

′)
}
F (µ)(x′). (2.128)

Therefore, the gravitating system described by the action (2.124) is degener-
ate, due to its invariance with respect to the transformations (2.128) realizing
the general coordinate transformations in the configuration space.

The first-kind constraints of the theory

H(µ)

(
gab, p

ab, ϕ, p
)

= 0

3This conclusion is based on the independence of the total action (2.124) on the choice of

a slicing (2.55) in the interior domain of space-time volume.
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are equivalent to the four Einstein field equations with the tensor sources

H⊥ = 2σg1/2
(
G⊥⊥ −

1

2
T⊥⊥

)
,

Ha = 2g1/2
(
G⊥a −

1

2
H⊥a

)
,

where H⊥⊥ and H⊥a are the projections of the energy-momentum tensor Hµν

on normal basis vectors. The equations which are obtained by the variation of
(2.124) with respect to gab and πab are equivalent to the remaining six Einstein’s
equations Gab − 1

2Tab = 0.
Let us note that in a particular case of the interaction without derivatives,

when P ab = 0 and the relation (2.122) is valid, the structure of the formulas
(2.124)-(2.126) is essentially simplified. The superhamiltonian H⊥ of the total
system is decomposed into a sum of the purely gravitational superhamiltonian
plus the superhamiltonian of the matter in an external gravitational field.

The non-dynamical character of the torsion field in ECT leads to an insignif-
icant modification of the superhamiltonian H⊥ of the total system, which does
not destroy the structure of the general action (2.124) and the involution rela-
tions (2.127). Therefore, the canonical formalism of the gravitating fields in the
Riemann-Cartan space has the same structure as in the Riemann space.



3
Dynamics of gravity theories
of Hilbert-Einstein type

3.1. The problem of the “frozen” formalism

The dynamical contents of the field theory is determined by the sector of its
physical degrees of freedom cleared of the ambiguity caused by the invariance
under the action of the local group.

The gravity theory of the Hilbert-Einstein type in the space of a general affine
connection can be effectively formulated in the Riemannian space. The torsion
fields in the theories of this type are non-dynamical and they are algebraically
excluded in terms of the components of the spin tensor of matter. Hence, they
cannot affect the dynamical content of the theory. In this context, without the
loss of generality, we will consider the dynamics of Einstein’s GR with arbitrary
matter sources.

The canonical action of the gravitating system (2.124) is a particular case
of the general class of degenerate systems described by the action (2.27). The
lapse and shift functions N (µ) are the Lagrange multipliers. Variation of (2.124)
with respect to the phase variables Φ and the Lagrange multipliers yields the
equations

Φ̇ = δNΦ, (3.1)

H(µ)(Φ) = 0, (3.2)

where δNΦ is the canonical transformation (2.128) defined by the parameters
F (µ) = N (µ). The Lagrange multipliers are not determined from the equations
of motion and remain arbitrary.
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As a result, we find ourselves in a strange situation: the right-hand side of
the canonical equations (3.1) turns out to be a pure canonical transformation
(2.30), (2.30a) that leaves the action invariant, i.e., the dynamics of the phase
variables reduces to canonical transformations with arbitrary parameters N (µ)

realizing the local invariance group in the phase space. It appears that there are
no dynamical degrees of freedom in the gravitating system, since its evolution
reduces to transformations from the invariance group of the action.

The reason is that in the total Hamiltonian of the system

H = H0 +

∫
d3xN (µ)H(µ) (3.3)

the quantity H0 does not explicitly contribute to the field equations (3.1), (3.2),
since it is the surface integral (2.85). In fact, a contribution does exist, but it is
implicit in its nature. The Hamiltonian H0 ensures the correctness of the vari-
ational problem for the action, leading to the proper boundary value problem
for the second-order field equations [14].

Such a situation producing an illusion of the absence of dynamics in the grav-
ity theory is called a problem of the “frozen” formalism. In a more explicit form,
this problem arises in cosmological closed models, where the surface integral H0

is absent, H0 ≡ 0, and the complete Hamiltonian (3.3) vanishes on the surface
of the constraints (3.2) in the phase space. The problem of the “frozen” formal-
ism arises more seriously when we try to construct the quantum gravity theory,
since in a naive approach to the quantization the vanishing of the Hamiltonian
(3.3) of the system means the absence of evolution of the vector of the quantum
field state

|Ψ(t) 〉 = exp (iHt) |Ψ(0) 〉 = |Ψ(0) 〉.
For the development of the canonical formalism of degenerate systems, ana-

lyzed in the previous chapter for the general theory, one needs to address the
arising problem of the “frozen” formalism.

3.2. Arnowitt-Deser-Misner procedure of selection
of physical degrees of freedom

Let us assume that the number of pairs of the phase variables of the matter field
ϕ is equal to N . Thus, the general dimension of the phase space of a gravitating
system is equal to 2n = 12 + 2N , since the total number of the gravitational
field momenta pab plus the components of the 3-metric gab is equal to 12. In
accordance with the general procedure of the previous chapter, the number of
the dynamical degrees of a degenerate system with m = 4 constraints of the
first kind (3.2) is equal to n−m = 2+N . Therefore, the pure gravitational field
accounts for the two dynamical degrees of freedom. Let us find these variables.

Consider the canonical transformation from the initial set of the phase vari-
ables Φ = (gab, p

ab, ϕ, p) to the new set of (12 + 2N) variables:
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gab, p

ab, ϕ, p
)
−→ (Xµ, Πµ; gA, pA), (3.4)

where (Xµ, Πµ) are the four pairs of the canonically conjugated phase variables,

and (g
A
, pA) are the remaining (N + 2) pairs (A = 1, 2, . . . , N + 2).

This transformation may be absolutely arbitrary. The only restriction im-
posed on it is as follows. Expressing the old phase variables in terms of the new
ones1

Φ = Φ
[
Xµ, Πµ; gA, pA

]
, (3.5)

we obtain the geometrodynamical constraints (2.125), (2.126) in terms of the
new phase variables:

H(µ) = H(µ) (x) [Xα, Πα; gA, pA]. (3.6)

One can define the matrix

J
(µ)
(ν) (x,y) ≡

δH(ν)(y)

δΠµ(x)
=
{
Xµ (x) , H(ν)(y)

}
. (3.7)

The transformation (3.4) must satisfy the condition of invertibility of the

functional matrix (3.7), det
(
J

(µ)
(ν) (x,y)

)
6= 0, so that the inverse matrix exists

and reads J−1(ν)
(λ)(y, z),∫

d3y J
(µ)
(ν) (x,y)J−1(ν)

(λ)(y, z) = δ
(µ)
(λ)δ(x−z),

and then one can solve the constraint equations H(µ) (x)
[
Xα, Πα; gA, pA

]
= 0

with respect to Πα,

Πµ(x) = −Pµ(x)[Xα; gA, pA ]. (3.8)

Since the transformation (3.4) is canonical, the action (2.124) in terms of new
variables takes the following form:

S =

t1∫
t0

dt

∫
d3x

{
pAġ

A +ΠµẊ
µ −H0 −N (µ)H(µ)(x)[X,Π; gA, pA ]

}
, (3.9)

where the surface integral H0 must also be written using (3.5) in terms of the
new phase variables.

The equations obtained from the variational principle for the action (3.9)
are equivalent to the complete set of the canonical equations. Let us write the
equation from the variation with respect to Πµ:

Ẋµ(x) =

∫
d3yN (ν)(y)J

(µ)
(ν) (x,y). (3.10)

1Since nothing is assumed about the locality of the transformation (3.4), Φ are the func-

tionals of the new variables as the functions of the three-dimensional coordinates x.
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In accordance with the general procedure of Chapter 2 we introduce the gauge
conditions:

χµ (x) ≡ Xµ(x)− fµ(t,x) = 0, (3.11)

where fµ(t,x) are some functions of the coordinates and the time parameter t.
Then the parametrization (2.38) of the complete set of the phase variables in
terms of the physical degrees of freedom (q∗, p∗) = (gA, pA) via

Xµ = fµ(t,x), Πµ = −Pµ[fα; gA, pA], (3.12)

guarantees that the complete set of the constraints and gauge conditions (2.39)
or (3.11) is satisfied. The action (3.9) in terms of the physical degrees of freedom
is obtained after substituting (3.12) into (3.9):

S
[
gA, pA

]
=

t1∫
t0

dt

{∫
d3x pAġ

A −Hphys(t)[g
A, pA]

}
, (3.13)

where the total physical Hamiltonian is equal to

Hphys(t)
[
gA, pA

]
= H0

[
gA, pA

]
+

∫
d3xPµ(x)

[
fα; gA, pA

]
ḟµ(t,x). (3.14)

When varying the action (3.13) with respect to (gA, pA), we obtain the closed
system of equations for the physical degrees of freedom, however, the lapse
and shift functions, which are the Lagrange multipliers, remain undetermined.
Without the knowledge of them, the dynamics of the gravitating system is not
fully determined. If we require the preservation of the gauge conditions (3.11)
in time, we obtain the equation (3.10) for N (µ)(x), where the variables Ẋµ(x)
are replaced with ḟµ(t,x), and hence

N (µ)(x) =

∫
d3y J−1(µ)

(ν)(x,y) ḟν(t,y). (3.15)

It is easy to see that these equations are equivalent to the equations (2.35)
and with H0 = 0 nonvanishing values of N (µ)(x) are entirely due to explicit
dependence of the gauge conditions (3.11) on time.

Therefore, the equations (3.13)-(3.15) solve the problem of selection of the
dynamically independent degrees of freedom, and one can construct a nontrivial
physical Hamiltonian. Let us consider the arbitrariness of the choice of the
functions fµ(t,x) in the additional conditions (3.11).

The lapse and shift functions must satisfy the following conditions:

N > 0, N2 −NaNa > 0. (3.16)

The first condition determines the positive direction of the time counted by
the parameter t, and the second condition means that the coordinate curve
t is time-like, i.e., it lies within the light cone. Strictly speaking, the second
condition is not mandatory, however, one should impose this condition if one
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requires that the coordinate system (t,x) could be realized using the physical
bodies.

In addition to the arbitrariness related with functions fµ(t,x), there is a large
arbitrariness in the choice of the new set of phase variables (3.4) connected with
an old set by a canonical transformation.

Due to the complicated differential character of the gravitational constraints,
there are no spatially-local canonical transformations (3.4) leading to the local
function for the Hamiltonian (3.14) density [50]. It means that in general case
the ADM method produces a non-local action for the physical variables and
the non-local expressions for the lapse and shift functions (3.15). As a rule, the

functional matrix (3.7) is a differential operator, and hence J−1(µx)
(νy) is an integral

operation requiring to fix the boundary conditions at the spatial boundary.

3.3. Asymptotically flat and closed worlds

It was established above that the construction of a nontrivial physical Hamil-
tonian is performed simultaneously with the selection of the dynamically in-
dependent variables of the gravitating system. In addition, the lapse and shift
functions are fixed uniquely, i.e., the physical time and coordinates are defined.
Without referring to the ADM procedure, it is impossible to construct a regular
Hamiltonian, since the naive Hamiltonian (3.3) cannot generate the dynamics
of the theory and produces the problem of the “frozen” formalism. That is quite
clear, since the basic notions of any theory are not the energy and momentum,
but the time and space where the dynamics of the physical degrees of freedom
takes place. The energy and momentum are in a certain sense conjugated quan-
tities to the time and coordinates, they are the generators of translations in the
spacetime.

To construct the dynamics of the gravitating system, it is necessary to distin-
guish two important subclasses of problems with essentially different physical
properties: the asymptotically flat insular worlds and the closed cosmological
systems.

The energy of asymptotically flat worlds

Asymptotically flat worlds are characterized by the presence of a region in them,
where the timelike and spacelike Killing vector fields2 exist. They cannot be
determined globally, since the space on the whole is essentially inhomogeneous,
however, they exist asymptotically.

An open asymptotically flat space should be considered as the region of the
spacetime with the boundary, all points of which are directed to the spatial
infinity. In the asymptotically flat space, the “lateral cylindrical” boundary

2The worlds, where only timelike asymptotic Killing vector fields exist, can be analyzed

similarly to the asymptotically flat worlds.
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∂V (see Fig. 2.1) is obtained in the limit of r → ∞ for the radius of the
two-dimensional sphere representing ∂e(t). Besides, the vertical line (parallel
to the time axis) generating the cylindrical boundary ∂V is set orthogonal to
the hypersurfaces e(t), that is on the whole, the boundary ∂V is orthogonal
to e(t) for any value of t. Therefore, the normal nµ to ∂V lies in the plane of
the hypersurface e(t) and is fixed by its projections na on e(t). Moreover, the
vector na coincides with the normal to the two-dimensional sphere ∂e(t) in the
three-dimensional space e(t). The element of the measure dσ̃ turns out to be
equal to

dσ̃ = Ndσ. (3.17)

Computing the extrinsic curvature of the boundary ∂V , one finds the expres-
sion for its trace

K = − 1

N
(naN)|a. (3.18)

Substituting (3.17) and (3.18) into (2.85) and taking into account that the
lapse function of the flat space is equal to one, we have

H0 =

∫
∂e(t)

dσ
{
− 2

[
na|a

]
N + 2na(pabNb − pNa)

}
, (3.19)

where
[
na|a

]
is the difference of the values of na|a for the curved and the flat

spaces.
The boundary conditions for the metric in an asymptotically flat space are

fixed as
gab = δab +

M

8πr
nanb +O

(
r−2
)
, na =

xa

r
,

N = 1− M

16πr
+O(r−2),

Na = O
(
r−2
)
,

 (3.20)

where M is the total mass of an isolated distribution of matter.
Since dσ = r2dΩ2 +O(r−2), where dΩ2 is the element of a solid angle, in the

limit of r →∞ only the terms of order not smaller than O
(
r−2
)

contribute to
H0. Therefore, when calculating [na|a], it is sufficient to restrict oneself just to
the first term of the power series of the metric expansion in its deviation from
the flat metric hab = gab − δab, which yields

− 2
[
na|a

]
= na

(
hab
|b − hbb|a

)
+O(r−3).

The momenta of the gravitational field are equal to

pab =
g1/2

2N
(gabgcd − gacgbd)

(
ġcd − 2N(c|d)

)
= O(r−3)

and they do not contribute to (3.19).
Thus, the Hamiltonian in asymptotically flat worlds takes the following form:
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H0 =

∫
∂e

dσa

(
hab|b − hbb|a

)
. (3.21)

This expression is covariant and does not depend on a choice of the spatial
coordinates. On the other hand, in Cartesian coordinates, it reduces to the
well-known Arnowitt-Deser-Misner energy [41]

E =

∫
dσa(∂bh

ab − ∂ahbb). (3.22a)

However, the expression (3.22a) is non-covariant, and for the computation in
an arbitrary coordinate system, even an asymptotically Cartesian, it may lead,
as shown in [49], to an arbitrary value of the energy H0.

The formula (3.21) yields the unambiguous result H0 = M , which confirms
the identification of the parameter M in the metric asymptotics (3.20) with the
total mass of an isolated distribution of matter. However, one has to remember
that the parameter M in the external Schwarzschild solution is not a pure mass
of matter, but it also includes the gravitational mass defect or the own energy
of the gravitational field.

Thus, in the framework of the general relativity theory on the basis of a
correct gravitational action function (2.82), one can obtain a covariant definition
of the energy of asymptotically flat worlds (in contrast to the opinion expressed
in [49]). In a similar way, one can covariantize the expressions [43] for the
total momentum and the angular moment of an asymptotically flat gravitating
system.

The result (3.22a) for the total energy of the gravitating system in an asymp-
totically flat world can be derived from the Landau-Lifshitz energy-momentum
pseudotensor [27].

When using in the ADM procedure the additional conditions (3.12) with the
functions fµ(t,x) that do not depend on time,

fµ = fµ(x), ḟµ(x) ≡ 0, (3.23)

in view of (3.14) one obtains the physical Hamiltonian, which numerically co-
incides with (3.21), but is a functional of the independent degrees of freedom
of the gravitating system

Hphys (t)
[
gA, pA

]
=

∮
dσa (∂bgab − ∂agbb)

gab = gab[g
A, pA]

. (3.24)

This statement represents the contents of the Regge-Teitelboim theorem [51]
about the physical Hamiltonian in the asymptotically flat worlds.

Since the physical Hamiltonian is determined by the spatial asymptotics of
the three-dimensional metric satisfying (3.20), we can illustrate the ADM meth-
ods on an example of a linearized gravitational field describing small deviations
of the metric from the flat one:

gab = δab + hab, hab � 1.
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Let us assume that the canonical transformation in (3.4) acts only on the
phase variables of gravitational field (gab, p

ab). We transform them using the
decomposition of an arbitrary symmetrical tensor fab into the longitudinal,
transverse and transverse-traceless parts:

fab = ∂afb + ∂bfa + fTab + fTTab . (3.25)

Here the transverse part fTab is expressed in terms of the trace fT = fTaa using
the projection operator

fTab =
1

2

[
δab −

∂a∂b
∆

]
fT , (3.26)

where 1/∆ is Green’s function of the Laplace operator ∆ = ∂a∂a in the open
flat space. The trace of the transverse part fT satisfies the equation

∆fT = ∆faa − ∂a∂bfab. (3.27)

Using (3.25)-(3.27), we transform the following expression:∫
dt

∫
d3x pabġab =

∫
dt

∫
d3x

{
pabTT ġ

TT
ab − gTab ṗabT − 2∂bp

abġa
}
,

where ga, g
T
ab, g

TT
ab are the components of the decomposition (3.25) of the three-

dimensional metric gab (a similar notation is used for pab). In the second term
of this expression, the integration by parts with respect to time t was done.
Taking into account that according to (3.26) gTab is expressed in terms of gT ,
we obtain∫

dt

∫
d3x pabġab =

∫
dt

∫
d3x

{
pabTT ġ

TT
ab − gT

1

2
ṗT − 2∂bp

abġa

}
, (3.28)

from which it is obvious that instead of (gab, p
ab) one can introduce the following

canonically conjugated variables:

Xa = ga, Πa = − 2∂bp
ab, (3.29)

X0 = − 1

2
pT , Π0 = gT , (3.30)

gA = gTTab , pA = pabTT , A = 1, 2. (3.31)

Separating the linear part with respect to the fields in the gravitational con-
straints (2.125) and (2.126), we find

H⊥ = ∆gaa − ∂a∂bgab + h⊥(hab, p
ab;ϕ, p),

Ha = − 2∂bp
ba + ha(hab, p

ab;ϕ, p),

where the terms h⊥ and ha are of higher order with respect to the fields. In
terms of the new phase variables (3.29)-(3.31), the constraints are recast into:

H⊥ = ∆Π0 + h0[X,Π; gA, pA;ϕ, p], (3.32)

Ha = Πa + ha[X,Π; gA, pA;ϕ, p],
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where in terms of the new variables, t0 and ta become functionals of the second
and higher order in their arguments.

Eq. (3.32) shows that the matrix (3.7) in the linear approximation reads

J
(µ)
(ν) (x,y) =

∆δ(y − x) 0

0 δab δ(y − x)

 . (3.33)

Let us impose the additional conditions (3.11) satisfying (3.23):

X0 = 0, Xa =
1

2
xa, (3.34)

then the Hamiltonian (3.14) takes the form (3.24). We use this form as a volume
integral [taking (3.27) into account]

H0 = −
∫
d3x∆gT . (3.35)

In the linear approximation, it is easy to obtain the dependence of this quantity
on the physical degrees of freedom (gTTab , p

ab
TT , ϕ, p). When solving the constraint

(3.32) in this approximation, we have

−∆gT (x) = h0[Xµ, Πµ; gA, pA;ϕ, p ]
X0 = 0, Xa = 1

2x
a, Πµ = 0

.

Taking into account (2.125) and (2.94), we can find t0, from which the physical
Hamiltonian of the gravitating system in the linear approximation is equal to

Hphys(t)[ g
TT
ab , p

ab
TT , ϕ, p ] =

∫
d3x

{
(pabTT )2 +

1

2
(∂ag

TT
bc )2 +Hm(ϕ, p)

}
.

(3.36)
In this approach, the purely gravitational degrees of freedom are identified

with the two transverse-traceless components of the metric and the conjugated
momenta. These are the two well-known transverse polarizations of the gravi-
tational wave.

Let us now determine the lapse and shift functions. In view of (3.33) and the
conditions (3.23) which are satisfied by the additional conditions (3.34), the
equations for Nµ take the following form (in the linear approximation):

∆N(x) = 0, Na(x) = 0. (3.37)

The equation (3.37) should be supplemented with the boundary condition,
which is induced by the asymptotically flat type of the metric

N
r →∞

= 1,

consequently
N(x) = 1 (3.38)

with an accuracy up to the terms linear in the fields.
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This result demonstrates how important are the boundary conditions in the
cosmological problems with the open models. Indeed, the entire dynamics of the
gravitating system and its energy are determined by the spatial asymptotics.
From the physical point of view, one can explain this as follows. The time and
space coordinates which are realized and measured using the physical instru-
ments, can be uniquely determined only on the spatial asymptotics, since there
are time-like and space-like Killing vector fields. Thus, the Hamiltonian (3.21)
is a generator of the global translation in time, determined asymptotically.

Dynamics of closed cosmological models

In contrast to the asymptotically flat worlds which were recently comprehen-
sively studied, the closed cosmological models and their dynamics remain a
stumbling block in the modern gravity theory.

In closed cosmological systems, the surface integral H0 is absent, and there-
fore the physical Hamiltonian is determined only by the second term in (3.14)
and it does not vanish only if ḟµ(t,x) 6= 0. The conditions (3.16) for the lapse
and shift functions also require that not all ḟµ(t,x) vanish.

Therefore, in order to have a nontrivial dynamics in the closed cosmological
models one needs to introduce the canonical gauges that explicitly depend on
time. Such a time-dependence of the gauge generates the dynamics of all the
physical variables of the theory. Alternatively, one can introduce the evolution
of the closed cosmology by fixing the Lagrange multipliers – the lapse and shift
functions, avoiding the use of explicitly time-dependent functions. However, this
is at most another way to construct the canonical gauge with a parametric time
dependence.

We can demonstrate this by the simplest example of the closed Friedman
Universe described by the metric

ds2 = −N2(t) dt2 +R2(t)γik dx
idxk, (3.39)

where the lapse function N(t) and the cosmological radius R(t) depend only
on time, and γik is the metric of the three-dimensional hypersphere of a unit
radius in some coordinates xi. Since the model is homogeneous, its Lagrange
function Lg in terms of the finite number of degrees of freedom is obtained by
the integration of (2.84) over the three-dimensional volume of the Universe:

Lg =
1

2l0

{
− l20

aȧ

N
+Na

}
, (3.40)

where a is the dimensionless radius of the Universe in the units of the Planck
length l0 =

√
2G~/3πc3,

R = l0 a. (3.41)

The superhamiltonian corresponding to (3.40) is equal to∫
d3xH(x) = − ε0

2

{
p2

a
+ a

}
, (3.42)
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where p is the momentum conjugated to the variable a:

p =
∂Lg
∂ȧ

= − l0
N
aȧ, (3.43)

and ε0 = l−1
0 is the Planck energy (ε0 = ~c/l0 in the usual units).

We assume that the Universe is homogeneously filled with a noninteracting
dust without pressure, so that the integral over the three-dimensional volume
of the Universe from the matter superhamiltonian Hϕ in (2.125) is equal to its
conserved mass-energy∫

d3xHϕ(x) = ε, ε = const.

Then the geometrodynamical constraint takes the following form:

H⊥ = 0, (3.44)

H⊥ =

∫
d3xH⊥(x) =

ε0

2

(
p2

a
+ a

)
+ ε. (3.45)

Because of the homogeneity of the Friedman model, other constraints are not
important since they are satisfied identically due to the invariance of the system
with respect to the spatial translations.

Therefore, a further analysis is equivalent to the ADM procedure with one
constraint in which the index µ takes only one value.

The equations (3.1) for the complete set of the phase variables Φ = (a, p)
reduce to

ṗ = − Nε0

2

(
p2

a2
− 1

)
,

and (3.43). The constraint equation (3.44) is the first integral of these equations,
which corresponds to the condition of preservation of the constraint in time.

The evolution of the Friedman Universe is usually found by choosing the
coordinate condition

N = R, (3.46)

that brings the metric (3.39) to the conformally static form. Combining (3.43)
and (3.46) we have p = − ȧ, as a result, the constraint (3.44) becomes an
equation for a(t), the solution of which gives

a(t) =
ε

ε0
(1− cos t), (3.47)

where the moment of time t = 0 corresponds to the cosmological singularity
a = 0.

Let us show that the gauge (3.46), containing the Lagrange multiplier, cor-
responds to a canonical gauge that explicitly depends on time. For this, we
choose the new canonical variables in accordance with the ADM procedure
(3.4) Π0 = Π,X0 = T :
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a =
√
−2Π cosT, (3.48)

p =
√
−2Π sinT. (3.49)

The constraint (3.45) in new variables is recast into the form

H⊥ = − ε0

2

√
−2Π

cosT
+ ε, (3.50)

and then a solution (3.8) of this constraint with respect to Π reads

Π = −P, P ≡ 2

(
ε

ε0

)2

cos2 T. (3.51)

Imposing now the additional condition (3.11)

T =
t− π

2
, (3.52)

we find the physical Hamiltonian of the system, see (3.14)

Hphys(t) =
ε

ε2
0

sin2(t/2).

The dynamically independent degrees of freedom of this Hamiltonian are the
variables of the dust-like matter, with the energy ε being the function of them.
Substituting (3.51) into (3.48), we obtain (3.47) again, that is, the canonical
gauge (3.52) which can be rewritten in the original phase variables as

a+ p tan(t/2) = 0, (3.53)

is equivalent to the coordinate condition (3.46). One can verify this using (3.15):

N =

(
∂H⊥
∂Π

)−1

Ṫ = l0a. (3.54)

Therefore, the choice of a one-parameter family of surfaces in the phase space
(3.46) or (3.53) determines the family of the space-like hypersurfaces in the four-
dimensional spacetime, and the dynamics of the system reduces to the motion
along this family with the growth of the time parameter t. The only difference of
fixing the gauge (3.46) from (3.53) is that in (3.46) the family of hypersurfaces
is determined not globally, but differentially, by fixing not a one-parameter
slicing itself, but rather its derivative with respect to the parameter t. All this
is directly extended to the general case of a non-homogeneous gravitating closed
cosmological system, but the choice of a system of space-like hypersurfaces and
their coordinate parametrization will be determined by the family of the four
canonical gauges χµ(t, Φ) = 0, explicitly depending on the time parameter t.

Moreover, each choice of the gauges, i.e., of the functions fµ(t,x) in (3.14)
will produce its own Hamiltonian. An ambiguity of determination of the energy
in the closed world, in contrast to an asymptotically flat one, is caused by the
fact that in closed Universes there are no a preferred observer and a preferred
system of the space-like hypersurfaces, which in open systems are associated
with the spacetime flat asymptotics.



4
Torsion effects on the structure
and evolution of gravitating systems

4.1. Matter fields in the Einstein-Cartan theory

As we demonstrated in Sec. 1.3., the spin-connection interaction does not have
an explicit dynamical nature in the Einstein-Cartan theory (ECT). Neverthe-
less, it modifies the structure of the matter sources of the gravitational field,
and thereby the spin of matter affects the dynamics of the metric. Further-
more, it is worthwhile to stress that the ETC is not competing with GR since
the (Γ-S)-interaction has a microscopic nature and is manifest on a scale of the
order of the mean distance between particles. The macroscopic gravitational
theory is obtained as a result of an appropriate averaging process. The value
of the term quadratic in spin T eff

µν becomes comparable with Tµν at densities

ρ ≥ ρcr = m2c4

~2G of the spinning matter built of particles with the mass m [7].
For the mass of a nucleon, the critical density ρcr ≈ 1057 kg/m3 is much smaller
than the Planck density ρ0 ∼ 1097 kg/m3 at which the quantum-gravitational
effects start dominating. Consequently, the torsion can be essential already at
the level of the classical theory of the gravitational interactions.

Let us begin our study of the torsion effects in ECT with the analysis of the
structure of the matter currents.

Weyssenhoff spinning fluid

Before we present a consistent variational theory, it is instructive to show that
one can include a fluid with spin into the dynamical scheme of ECT on the
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basis of covariant conservation laws of the energy-momentum and spin (1.45)
and (1.47). Our presentation follows [191].

The ideal fluid with spin (or a spinning fluid) is a continuous medium, each
element of which is characterized by the energy, momentum and an intrin-
sic angular momentum. The phenomenological model of such a medium was
developed by Weyssenhoff and Raabe [54] in the flat Minkowski spacetime.
Accordingly, the general-relativistic ideal fluid with spin will also be called a
Weyssenhoff fluid.

In the phenomenological approach, elements of a medium are described by
the (average) 4-velocity uµ, the 4-vector Pµ of the energy-momentum density,
and by the density of the spin angular momentum Sµν = S[µν]. The spatial
components of the latter constitute the 3-vector S = {S23, S31, S12} which in
the rest frame of the fluid is equal to the 3-dimensional density of intrinsic
angular momentum. The remaining components also constitute the 3-vector
q = {S10, S20, S30}. We assume that this vector vanishes in the rest frame of
fluid, i.e.,

Sµνu
ν = 0. (4.1)

This assumption is called a Frenkel supplementary condition.
The 4-velocity is a timelike vector which is normalized by uµu

µ = −1. The
projection of the 4-momentum on the rest frame of the fluid yields the energy
density ε = −uµPµ.

As a first step, we consider the spinning dust on non-interacting elements
with the vanishing pressure. The phenomenological postulate for the canoni-
cal energy-momentum tensor and the canonical spin tensor of a dust reads as
follows:

tλµ = uλPµ,

Sλµν = uλSµν .

}
(4.2)

Making use of the covariant conservation law of the angular momentum (1.47),
we find a relation between the densities of the energy-momentum and spin

uµPν − uνPµ = 2c(∇σ − 2Qσ)(uσSµν). (4.3)

Contracting this equation with the 4-velocity, we find the 4-vector of momentum
explicitly

Pµ = εuµ + 2uλcṠµλ. (4.4)

We introduced a convenient notation for the derivative ϕ̇A := (∇σ−2Qσ)(uσϕA)
for an arbitrary tensor density ϕA. Substituting (4.4) back into (4.3), we recast
the latter into the equation of motion of spin

Ṡµν = uµu
λṠνλ − uνuλṠµλ. (4.5)

Finally, making use of (4.4) in (4.2), we obtain the canonical energy-momentum
tensor of the Weyssenhoff spinning dust

tµν = εuµuν + 2uµu
λcṠνλ.
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The first term on the right-hand side represents the usual ideal fluid with the
dust equation of state, and the last term is the spin contribution.

The phenomenological theory can be upgraded to a complete dynamical the-
ory of a spinning fluid. In order to construct the Lagrangian, we need to choose
the appropriate variables which describe such a continuous medium. In the
classical continuum mechanics, the ordinary matter consists of the structure-
less elements - the material points without physical properties other than mass.
In contrast, the spinning fluid represents an example of a matter with mi-
crostructure, the elements of which have additional degrees of freedom such as
spin.

Following Cosserat brothers [25], to describe the dynamics of a medium with
microstructure we attach a triad of vectors with each matter element. The field
of such material triads is denoted bµi , i = 1, 2, 3, and together with the 4-velocity
it comprises a local frame bµa , a = 0, 1, 2, 3,

bµa = {bµ0 = uµ, bµ1 , b
µ
2 , b

µ
3}

defined at all the spacetime points of the domain occupied by the matter. The
vectors of the triad are chosen orthogonal to each other and to uµ and have the
unit length:

gµνb
µ
ab
ν
b = ηab = diag(−1,+1,+1,+1).

Such an orthonormal tetrad is called a material frame and it is different from
the spacetime tetrad hµa which we discussed in Sec. 1.1.. We can choose hµa
arbitrarily and can always change this tetrad using a local Lorentz rotation. In
contrast, the material tetrad bµa cannot be chosen arbitrarily, it is rigidly fixed
and moves together with the fluid.

We are now in a position to formulate the variational principle for the spinning
fluid. We begin by postulating (as in the usual case of an ideal fluid) that the
dynamics of the medium is such that the number of particles is constant, and
the entropy s and the identity of particles are conserved along the flow lines of
the fluid. Mathematically, this means that we impose the constraints

∂µ (
√
gρuµ) = 0, uµ∂µs = 0, uµ∂µX = 0.

Here ρ is the particle number density, and the Lin variable X is introduced to
identify matter elements.

We will describe the physical properties of the fluid by the particle density
ρ, the internal energy density ε, and the specific spin density µij = −µji (i.e.,
the spin density per matter element), i, j = 1, 2, 3.

With all these prerequisites, the Lagrangian of the spinning fluid reads

LW = − ε(ρ, s, µij) +
1

2
ρµijgµνb

µ
i u

α∇αbνj

+ ρuµ∂µλ1 + λ2u
µ∂µs+ λ3u

µ∂µX + λab(gµνb
µ
ab
ν
b − ηab).

The first line represents the physically essential part related to the kinetic and
potential energy of the system, and the second line takes into account all the
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constraints which are imposed on the system by means of the Lagrange multi-
pliers λ1, λ2, λ3 and λab.

The thermodynamical properties of the spinning fluid are described by the
usual Gibbs law corrected by the spin energy contribution:

Tds = d

(
ε

ρ

)
+ p d

(
1

ρ

)
− 1

2
ωijdµ

ij .

Here T is the temperature, p is the pressure, and ωij is the thermodynamical
variable conjugated to the specific spin density µij .

The equations of motion are derived from the variation of the matter action
1
c

∫
d4x
√
gLW with respect to the total set of (fundamental and auxiliary)

variables ΦA =
{
ρ, s,X, µij , bµa , λ1, λ2, λ3, λ

ab
}

. Variation with respect to the
Lagrange λ multipliers, we obtain the set of constraints, whereas the variation
with respect to ρ, s, X, and µij yields, respectively:

−ε− p+
1

2
ρµijgµνb

µ
i u

λ∇λbνj + ρuµ∂µλ1 = 0,

ρT + λ̇2 = 0, λ̇3 = 0, ωij = gµνu
αbµi ∇αb

ν
j .

Here we had to make use of the Gibbs law to evaluate the derivatives of the
internal energy density ε with respect to its arguments.

Finally, from the variation of the material tetrad, uµ and bµi , we find

1

2
ρµijgρσb

ρ
i∇µb

σ
j + ρ∂µλ1 + λ2∂µs+ λ3∂µX + 2λ0agµνb

ν
a = 0,

gµν

(
ρµijuλ∇λbνj +

1

2
bνju

λ∂λµ
ij + 2λiabνa

)
= 0.

Contracting these equations with uµ and bµk , we find the Lagrange multipliers

2λ00 = ε+ p, 2λ0i = ρµijuνu
α∇αbνj , 2λik = − ρµ(i|j|bk)

ν u
α∇αbνj ,

and obtain the equations of motion of spin:

uα∂αµ
ij + µikωjk + µkjωik = 0.

The Latin 3-dimensional indices that refer to the material tetrad are moved
with the help of the Euclidean metric δij and δij . We also introduced the inverse
material triad by biµ = gµνη

ijbνj = gµνδ
ijbνj . One can verify the relations

bjµb
µ
i = δji , biνb

µ
i = δµν + uµuν .

Finally, we apply these results to derive the canonical tensors of energy-momen-
tum and spin. Recalling the definitions of Sec. 1.3., we find from the Weyssenhoff
Lagrangian LW :

tλµ = p δλµ + (p+ ε)uλuµ + 2uλuνcṠµν ,

Sλµν = uλSµν ,

}
(4.6)
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where we have the spin density explicitly

Sµν =
1

2
ρµijbµi b

ν
j .

By construction, the spin tensor satisfies the Frenkel condition (4.1). The canon-
ical sources (4.6) provide a consistent generalization of the phenomenological
result (4.2) to the case of fluid with nontrivial pressure p.

This completes the construction of the variational theory of the Weyssenhoff
spinning fluid. It is applicable to any gravitational theory.

Let us now specialize to the Einstein-Cartan gravity with the Lagrangian
(1.34) and the field equations (1.48), (1.49). Combining last equation with the
Frenkel condition (4.1), we find the torsion Qλµν = κc uλSµν (the torsion trace
vanishes, Qµ = 0, since Sµ = uνSµν = 0). Plugging this into (1.51), we find the
effective Lagrangian of the spinning fluid

Leff
W = − ε(ρ, s, µij) +

1

2
ρµijgµνb

µ
i u

α
{}
∇αbνj +

κc2

8
ρ2µijµij

+ ρuµ∂µλ1 + λ2u
µ∂µs+ λ3u

µ∂µX + λab(gµνb
µ
ab
ν
b − ηab).

The last term in the first line describes the typical spin-spin contact interaction.
One can also write this as

κc2

8
ρ2µijµij = κc2S2, S2 :=

1

2
SµνSµν ,

but this form produces a misleading impression that the spacetime metric tensor
is involved. In reality, the effective spin-spin interaction term depends only on
the particle density ρ and on the specific spin density µij . This is important to
keep in one’s mind when performing the variation of the effective fluid action
with respect to the metric.

Taking into account that the variation of the Christoffel symbols reads

δ{λµν} =
1

2
gλα
({}
∇µδgνα +

{}
∇νδgµα −

{}
∇αδgµν

)
,

it is straightforward to find the effective metrical energy-momentum tensor

T eff
µν = peffgµν + (peff + εeff)uµuν + 2c

(
uαuβ − gαβ

) {}
∇α
(
u(µSν)β

)
,

εeff = ε− κc2S2, peff = p− κc2S2.

 (4.7)

Summarizing, the structure of the sources of the gravitational field in the
Riemann-Cartan spacetime with torsion for the Weyssenhoff spinning fluid is
given by (4.6). For the case of the Einstein-Cartan theory, the dynamics of the
gravitational field is described by Einstein’s equation (1.52) with the effective
energy-momentum tensor (4.7) that depends on the spin density square and the
derivatives of the spin tensor.

The phenomenological way to introduce the spin in the fluid model was dis-
cussed in the numerous papers, and a number of variational principle approaches
for the spinning fluid were developed, see [12], for example.
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Spinor fields in ECT

Of a particular interest is the study of the self-gravitating fields with spin which
due to the contact character of spin-spin interaction of the Einstein-Cartan
model gives rise to a nonlinear extension of GR expressed by the effective equa-
tion (1.52). The spin-spin interaction caused by space-time torsion is manifest
as a nonlinearity of these fields, as we demonstrate below.

We consider here the most important physical example of the spinor Dirac
field. As the Lagrangian of the Dirac field Ψ in the space U4, we take

LD(Ψ,Ψ, ωµ, gµν) =
~c
2

(
ΨγaDaΨ−DaΨγaΨ

)
+mc2ΨΨ. (4.8)

Here m is the rest mass of the Dirac fermion Ψ, γa are the flat Dirac matrices
in Weinberg’s representation [192], and Da = hµaDµ with

DµΨ = ∂µΨ + ωµΨ.

The expression for the covariant derivatives of spinors is defined by formulas
(A2.7)-(A2.8) of Appendix A2.

As independent dynamical variables, one can take {Ψ,Ψ, gµν ,Γλµν}, on which
the metricity condition (1.8) is imposed as a constraint. If the latter is solved
explicitly, the connection Γλµν takes the form (1.12), and the spinor connection
(A2.6) can be recast into

ωµ =
1

4
γν
{}
∇µγν −

1

4
γνTλνµγλ. (4.9)

However, since the tetrad field is fundamentally involved in the definition of the
spinor connection and the covariant derivative, it is more convenient to switch
to the tetrad formalism and to take the equivalent set of independent dynamical
variables {Ψ,Ψ, haµ,Γabµ}. The metricity condition (1.8) in the tetrad formalism
reads

∇µηab = −Γabµ − Γbaµ = 0.

Consequently, we conclude that the metric-compatible local Lorentz connection
is skew-symmetric: Γabµ = Γ[ab]µ. The same property then shares the tetrad
curvature tensor: Rabµν = R[ab]µν .

The field equations of the theory are derived from the variational problem
for the total Lagrangian (1.34) in the tetrad disguise

S =

∫
d4xh

{
1

2κc
Rabµνh

µ
ah

ν
b +

1

c
LD
}
. (4.10)

Here we denoted the determinant of the tetrad h := dethaµ; obviously we have
h =
√
g. In the tetrad formalism we do not need to add the metricity condition

with the Lagrange multipliers, it is sufficient just to take the skew-symmetric
local Lorentz connection Γabµ.
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Variation of the action (4.10) with respect to the independent variables yields:

δS

δhµa
=

1

κc
(Raµ −

1

2
haµ)− LD

c
haµ −

~
2

(DµΨγaΨ−ΨγaDµΨ) = 0, (4.11)

δS

δΓabµ
= − 2

κc h
Dν (hhν[ah

µ
b]) +

~
8

Ψ{γµγ[aγb] + γ[aγb]γ
µ}Ψ = 0, (4.12)

δS

δΨ
= ~γa(Da −Qa)Ψ +mcΨ = 0, (4.13)

δS

δΨ
= − ~(Da −Qa)Ψγa +mcΨ = 0. (4.14)

Here the covariant derivative Dµ acts only on the tetrad indices. For example,
Dµvνa = ∂µv

ν
a − Γbaµv

ν
b for an arbitrary tensor object that carries both (world

and tetrad) types of indices. Directly form the definition of the torsion, one can
verify the useful geometrical identity

2

h
Dν (hhν[ah

µ
b]) ≡ Q

µ
ab + hµaQb − h

µ
bQa. (4.15)

Making use of the definitions of Sec. 1.3., we find the canonical energy-
momentum and spin tensors

tλµ = LDδλµ +
~c
2

(DµΨγλΨ−ΨγλDµΨ),

Sλµν =
~
8

Ψ{γλγ[µγν] + γ[µγν]γ
λ}Ψ =

i~
4
εµν

λσΨγσγ5Ψ.

Since the spin tensor of the Dirac field is completely antisymmetric, the torsion
trace vanishes Qµ = 0 and hence the Dirac equation (4.13) in U4 is simplified,

~γaDaΨ +mcΨ = 0, (4.13a)

and a similar result is found for the conjugated equation (4.14).
With the help of (4.15), the Palatini equation (4.12) determines the torsion

Qλµν = κcSλµν =
iκ~c

4
εµν

λσΨγσγ5Ψ. (4.16)

This means that in the irreducible decomposition (1.13) only the pseudotrace
of torsion is nontrivial, Q̌µ = iκ~c

4 Ψγµγ5Ψ.
It is straightforward to see that the fermion Lagrangian (4.8) vanishes “on-

shell”, LD = 0, when the spinor fields that satisfy the Dirac equation (4.13a).
As a result, Einstein’s equation (4.11) reads (converting the tetrad indices into
the world ones):

Gµν(Γ) = κtµν =
κ~c
2

(DνΨγµΨ−ΨγµDνΨ). (4.17)

The system (4.13), (4.13a), (4.16), and (4.17) represents the complete set of
the dynamical equations for the Dirac field Ψ,Ψ interacting with the gravita-
tional field gµν ,Γ

λ
µν .
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Using (4.9) and (4.16), we recast the Dirac equation (4.13a) into

γa
{}
DaΨ + l20(Ψγaγ5Ψ)γaγ5Ψ +

mc

~
Ψ = 0, (4.18)

where l20 = 3
8κ~c, i.e., l0 ≈ 4.95 × 10−35 m. We thus conclude that the torsion

induces a Ψ4-nonlinearity in the Dirac equation (4.18).
Combining the general formula for the Riemann-Cartan connection (1.12)

with (4.16), we can decompose the Einstein tensor into the Riemannian and
post-Riemannian parts:

G(µν)(Γ) = Gµν +
(κ~c

4

)2 [
gµν(Ψγaγ5Ψ)(Ψγaγ5Ψ) + 2(Ψγµγ5Ψ)(Ψγνγ5Ψ)

]
.

(4.19)
We need only the symmetric part, since the skew-symmetric part of (4.17)
is satisfied due to the conservation law of the total angular momentum. The
validity of the latter can be directly verified using the field equation (4.13) and
the expressions for the canonical energy-momentum and spin.

As we described in Sec. 1.3., the dynamics of the system is determined by
the effective Lagrangian 1

2κcR + 1
cL

eff
D , where the effective Lagrangian for the

Dirac field takes the form

Leff
D =

~c
2

{
Ψγa

{}
DaΨ−

{}
DaΨγaΨ + l20(Ψγaγ5Ψ)(Ψγaγ5Ψ)

}
+mc2ΨΨ. (4.20)

The gravitational field equation (4.17) then reduces to the Einstein equation
(1.52) with the effective energy-momentum tensor

T eff
µν =

~c
2

{{}
D(µΨγν)Ψ−Ψγ(µ

{}
Dν)Ψ− gµν l20(Ψγaγ5Ψ)(Ψγaγ5Ψ)

}
. (4.21)

Now let us consider a nonlinear spinor field of the Ivanenko-Heisenberg [56]
type as a source of the gravitational field in the framework of the Einstein-
Cartan theory. Its generally covariant Lagrangian reads

LIH =
~c
2

{
ΨγaDaΨ−DaΨγaΨ∓ λ2

p(Ψγaγ5Ψ)(Ψγaγ5Ψ)
}
, (4.22)

where λp is the coupling constant with the dimension of length.
The nonlinear spinor Ivanenko-Heisenberg equation in the Riemann-Cartan

spacetime U4 follows from the Lagrangian (4.22):

γµDµΨ∓ λ2
p(Ψ

+γaγ5Ψ)γaγ5Ψ = 0.

The canonical tensor of spin coincides with that of the Dirac field, and the
torsion is again determined by the Palatini equation (4.16). Substituting the
torsion, we recast the nonlinear spinor equation into the form similar to (4.18):

γµ
{}
DµΨ + (l20 ∓ λ2

p)(Ψγaγ5Ψ)γaγ5Ψ = 0. (4.23)
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If we fix the coupling constants so that λ2
p = l20 and choose the upper sign in

the last term of (4.23), the latter becomes the field equation of a Dirac neutrino
in the Riemannian spacetime

γµ
{}
DµΨ = 0. (4.24)

The metrical energy-momentum tensor coincides with the symmetric part of
the canonical energy-momentum tensor, and for the nonlinear spinor field with
the coupling constant λ2

p = l20 we derive

Tµν = t(µν) =
~c
2

{
D(µΨγν)Ψ−Ψγ(µDν)Ψ+gµν l

2
0(Ψγaγ5Ψ)(Ψγaγ5Ψ)

}
. (4.25)

Decomposing this into the Riemannian and post-Riemannian parts and com-
bining with (4.19), we arrive at the Einstein equation (1.52) with the effective
energy-momentum tensor

T eff
µν =

~c
2

{{}
D(µΨγν)Ψ−Ψγ(µ

{}
Dν)Ψ

}
. (4.26)

The whole dynamics of the coupled spinor and gravitational fields is described
by the corresponding effective Lagrangian

Leff
IH =

~c
2

{
Ψγa

{}
DaΨ−

{}
DaΨγaΨ

}
.

We can formulate the conclusions that follow from our observations in the
form of the two equivalence theorems as follows.

The Einstein-Cartan theory of the neutrino (massless Dirac spin- 1
2 fermion)

field in the Riemann-Cartan spacetime

G(µν)(Γ) =
κ~c
2

{
D(µΨγν)Ψ−Ψγ(µDν)Ψ

}
,

γaDaΨ = 0,

is equivalent to the Einstein theory of the nonlinear spinor (of the Ivanenko-
Heisenberg type) field in the Riemannian spacetime:

G(µν) =
κ~c
2

{{}
D(µΨγν)Ψ−Ψγ(µ

{}
Dν)Ψ− gµν l20(Ψγaγ5Ψ)(Ψγaγ5Ψ)

}
,

γa
{}
DaΨ + l20(Ψγaγ5Ψ)γaγ5Ψ +

mc

~
Ψ = 0.

In a similar way, under the condition λ2
p = l20, the Einstein-Cartan theory of

the nonlinear spinor field in the Riemann-Cartan spacetime

G(µν)(Γ) =
κ~c
2

{
D(µΨγν)Ψ−Ψγ(µDν)Ψ + gµν l

2
0(Ψγaγ5Ψ)(Ψγaγ5Ψ)

}
,

γaDaΨ− l20(Ψγaγ5Ψ)γaγ5Ψ +
mc

~
Ψ = 0
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is equivalent to the Einstein theory of the neutrino Dirac spinor field in the
Riemannian spacetime:

G(µν) =
κ~c
2

{{}
D(µΨγν)Ψ−Ψγ(µ

{}
Dν)Ψ

}
,

γa
{}
DaΨ = 0,

These results actually reveal the geometrical nature of nonlinearity of the
Ivanenko-Heisenberg [58] equations1. It must be stressed that our conclusions
follow from the analysis of the complete system of equations describing the
self-gravitating spinor fields.

However, it is worthwhile to mention that the equality of the coupling con-
stants l0 and λp in the Ivanenko-Heisenberg equation is physically unsubstan-
tiated unless it becomes a natural part of a fundamental theory, or the specific
physical conditions arise which lead to such an equality. In particular, one can
show that the aforementioned equivalence may take place at the initial stages of
the cosmological evolution [60] by means of the spontaneous symmetry breaking
mechanism of the vacuum state of a self-interacting scalar field with conformal
coupling [71, 72] in an external metric of an open Friedman model [61].

Another possibility to adjust the coupling constants l0 and λp, is to ex-
tend the Einstein-Cartan model (as it is actually required in the gauge theory
for a non-semisimple group) by including into the gravitational Lagrangian,
along with the Hilbert term with Einstein’s coupling constant κ, the term
quadratic in the torsion tensor with an additional dimensionless coupling con-
stant χ. A particular example of such an extended theory gives the Lagrangian

1
2κc

(
R(Γ) + χQµ

λνQµλν
)
.

Vector fields in ECT

The gravitational interaction of vector fields is an interesting issue in the frame-
work of the Einstein-Cartan theory. If we start with a theory of a massless vector
field Aµ in the flat spacetime, and formally apply the minimal coupling princi-
ple by replacing the ordinary derivatives by the covariant ones, then in U4 we
obtain the Lagrangian

LA = − 1

16π
Fαβ(Γ)Fαβ(Γ),

where the generalized vector field strength tensor reads

Fαβ(Γ) = ∇αAβ −∇βAα = Fαβ + 2QλαβAλ.

1The dynamics of the two-component neutrino in the U4 Riemann-Cartan spacetime iden-

tically coincides with the dynamics of the neutrino in the Riemann spacetime. Within the
so-called strong gravitation of A. Salam [59] one has l0 = λp.



4.1. Matter fields in the Einstein-Cartan theory 67

Here Fαβ = ∂αAβ−∂βAα is the usual Maxwell tensor. The field equations for the
coupled gravitational and vector fields are obtained from the action (1.34) by the
variation with respect to the fundamental variables gµν ,Γ

λ
µν , Aµ, and the La-

grange multipliers Λαβγ . The resulting system of the Einstein-Cartan equations
(1.48) and (1.49) describes the dynamics of the gravitational fields (gµν , Q

λ
µν)

created by its sources: the canonical tensors of the energy-momentum and the
spin of the vector field

t(µν) =
1

4π

{
Fµα(Γ)Fν

α(Γ)− 1

4
gµνFαβ(Γ)Fαβ(Γ)

+ (∇λ − 2Qλ)A(µFν)
λ(Γ)

}
,

Sλµν = − 1

4πc
A[µFν]

λ(Γ).

In addition, the dynamics of the vector field Aµ is described by the equation

(∇α − 2Qα)Fαβ(Γ) = 0. (4.27)

Let us solve the Palatini equation (1.49) with respect to the torsion tensor.
This is a nontrivial task since the torsion appears on both sides (explicitly on
the left-hand side, and implicitly in Fµν(Γ) on the right-hand side). After some
algebra we find

Qλµν = − 2G

c4

{
A[µFν]

λ +
(Gc4A

λA[µ − 1
2δ
λ
[µ)Fν]σA

σ

1− G
c4A

2

}
. (4.28)

Here we denoted A2 = AµA
µ, and let us remind that Fµν (no dependence on

Γ) is the usual Maxwell tensor. For the trace we have a simple result

Qµ = − G

2c4
Fµν(Γ)Aν = − G

2c4
FµνA

ν

1− G
c4A

2
.

Note that QµAµ = 0.
Substituting (4.28) into (4.27), we obtain the generalized “Maxwell equation”,

the nonlinearity of which is caused by space-time torsion induced by the vector
field spin [62]

1
√
g
∂α
(√
gFαβ(Γ)

)
=

4π

c
Jβ , (4.29)

where the effective 4-current reads

Jβ =
G

4πc3
Fαβ(Γ)Fαγ(Γ)Aγ .

This current satisfies the continuity relation ∂β(
√
gJβ) = 0 by virtue of the field

equation (4.29). Making use of the torsion (4.28), we have the explicit form of
the generalized vector field strength

Fµν(Γ) = Fµν −
2G
c4 A[µFν]λA

λ

1− G
c4A

2
. (4.30)
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As we explained in Sec. 1.3., the system of the vector field equation (4.27),
(4.29) plus the gravitational equation (1.46) can be rewritten as the system of
the Einstein equation of GR and of the non-linear vector field equation described
by the total Lagrangian 1

2κR+ Leff
A with the effective Lagrangian

Leff
A = − 1

16π

{
FµνF

µν +
2Gc4FµαF

µβAαAβ

1− G
c4A

2
− 2
√
g
∂µ

(√
gFµνAν

1− G
c4A

2

)}
.

The torsion was eliminated with the help of (4.28), so that R is the scalar
of the Riemannian curvature, and Fµν = ∂µAν − ∂νAµ is the usual Maxwell
tensor. The last term is a total divergence and it does not contribute to the
field equations. One can directly verify that the nonlinear vector field equation
(4.29) is obtained from the effective Lagrangian above by means of the variation
with respect to the vector field Aµ, so that Jβ = − c∂Leff

A /∂Aβ .
When introducing the interaction of a massless vector field with the spacetime

torsion, the gauge invariance of the massless vector field theory (4.29) is vio-
lated2, which essentially changes the dynamical content of the theory. Indeed,
the usual Maxwell equations describe the massless spin-1 particle (photon) with
the two degrees of freedom. But now the vector field Aµ has 3 degrees of freedom
and thus cannot be interpreted as the electromagnetic field. Nevertheless, the
resulting nonlinear theory still does have the current conservation law, namely
∂β(
√
gJβ) = 0, i.e., the theory under consideration is partially gauge-invariant

in the sense of Glashow and Gell-Mann [64]. Partial gauge-invariant nature
of the vector field in the presence of the gravitation is well consistent with
the interaction hierarchy, where the weaker interaction violates the symmetries
typical for the stronger interaction. In the framework of such a hierarchy, the
requirement of the local gauge invariance, according to which each conservation
law corresponds to some gauge field, turns out to be valid only approximately,
when the weaker interactions are neglected.

Let us study the “electrostatic” solutions of the equation (4.29) in the Mink-
owski spacetime with gµν = diag(−1,+1,+1,+1). Denoting the Cartesian co-
ordinates xµ =

{
t, xi

}
, with i = 1, 2, 3, we use the standard ansatz for the 4-

potential:Aµ =
{
ϕ(xi), 0, 0, 0

}
. The generalized “electromagnetic” field strength

is defined in terms of the tensor Fαβ(Γ) = (E,B), which is a covariant (in terms
of the spacetime U4) generalization of Maxwell’s tensor Fαβ . Then (4.29) re-
duces to the Gauss type equation [62]

∇ ·E = 4πρ, (4.31)

where from (4.30) we find

ρ =
G

4πc4
E2ϕ, E =

−∇ϕ

1 + G
c4ϕ

2
.

2Something similar happened for the covariant generalization of spinor, neutrino (massless)

equations, when their conformal invariance was violated.



4.1. Matter fields in the Einstein-Cartan theory 69

The equation (4.31) for the function ϕ explicitly reads(
1 +

G

c4
ϕ2
)

∆ϕ− G

c4
ϕ(∇ϕ)2 = 0.

Although the resulting nonlinear equation looks quite nontrivial, remarkably

there exists a substitution ϕ = c2√
G

sinhχ, that yields a linear Laplace equation

of Maxwell’ electrostatics ∆χ = 0.
It is straightforward to obtain a spherically symmetric solution of (4.31) for

ϕ(xi) = ϕ(r), with r =
√
xixi:

ϕ =
c2√
G

sinh

(
q
√
G

c2 r

)
.

Here q is an integration constant with a dimension of a charge. This solution
obviously has a Coulomb asymptotic behaviour at infinity, for r →∞. However,
the usual Coulomb singularity at r = 0 is absent3. As a result, the corresponding
“electric” field and the “charge” density are also regularized:

E =
q

cosh( q
√
G

c2r )

r

r3
, ρ =

√
G sinh( q

√
G

c2r )

4πc2 cosh2( q
√
G

c2r )

q2

r4
.

The qualitative behaviour of the solution, see Fig. 4.1, is as follows4: Both
functions display the Coulomb asymptotics at infinity, whereas they both vanish
at the origin, E(0) = 0, ρ(0) = 0. The integral over the 3-space of the charge
density is finite and easily evaluated:∫

V

d3x ρ = q,

so that we can indeed identify the integration constant q with the total “charge”.
The nonsingular generalized “electric” field reaches its largest value at rEmax =
= 0.14×10−24 q, whereas the charge density is maximal at rρmax = 0.07·10−24 q.
To make an estimate, for an elementary charge of an electron q = 4.8 · 10−10

(in Gaussian absolute electrostatic units), we find rEmax = 0.7 · 10−34 cm and
rρmax = 0.35 · 10−34 cm, respectively.

One can evaluate the energy of the regular “electromagnetic” field configu-
ration corresponding to this solution. It is straightforward to write down the
energy density for the spherically symmetric solution making use of the canon-
ical energy-momentum tensor:

H = t00 =
1

8π
E2 − ϕρ+

1

4π
∇(ϕE).

3Note, that such form of the potential is obtained by Urbakh within proposed nonlinear
electrodynamics [55].

4Taking into account the static spherically symmetric gravitational metric field gµν does

not essentially change the behaviour of E(r) and ρ(r) [62, 67].
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Figure 4.1: Behaviour of the static electric field strength (a) and distribution of
the charge density (b) (dotted line corresponds to Coulomb’s law).

Using the Gauss theorem we see that the last term does not contribute to the
total energy since both the potential ϕ and the “electrostatic” field E vanish
at the spatial infinity. The first term on the right-hand side is analogous to the
energy density of linear (Maxwell’s) electromagnetic field, whereas the second
may be interpreted as the energy density of the self-interaction due to the
nonlinear character of the resulting effective theory. The latter term is singular
at the origin and it makes a divergent contribution to the integrated total mass∫
d3xH. Subtracting this divergent self-interaction term, we find the total mass

of “electrostatic” field configuration:

mem =
W

c2
=

1

8πc2

∫
d3xE2 =

q√
G
.

For the electron charge, mem =
√
α~c
G = 1.86 × 10−9 kg, which is close to the

mass of the classical Markov maximon [66] (with the fine structure constant
α ≈ 1/137).

We conclude our discussion of the vector fields by a brief outline of the massive
case. The mass term in the Lagrangian does not change the Palatini equation,
and the effective nonlinear field equation of the massive vector field is obtained
similarly to (4.29) by eliminating the torsion using (1.49) and (4.28):

1
√
g
∂α
(√
gFαβ(Γ)

)
−m2

AA
β =

4π

c
Jβ . (4.32)

Using the static ansatz Aµ =
{
ϕ(xi), 0, 0, 0

}
, and subsequently making a sub-

stitution ϕ = c2√
G

sinh(η/2), we recast (4.32) into

∆η = m2
A sinh η. (4.32a)
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Then for the spherically symmetric solution we find η ∼ exp(−mAr)
r , i.e., the

solution asymptotically (with r →∞) approaches the Yukawa potential.
Another interesting class of exact solutions can be obtained for the ansatz

Aµ = {0, 0, A2(x, t), 0} [63]. Plugging this into the nonlinear equation (4.32),

and making a substitution A2 = c2√
G

sinφ, we derive the well-known sin-Gordon

equation
φ−m2

A sinφ = 0,

where the 2-dimensional d’Alembert operator = − 1
c2

∂2

∂t2 + ∂2

∂x2 . This is a
completely integrable system which admits soliton solutions.

Therefore, we established the geometrical nature of nonlinearity of sine-
Gordon in the same way that the geometrical nature of nonlinearity of spinor
fields of Ivanenko-Heisenberg was established.

4.2. Conformal invariance and spacetime torsion

In Sec. 1.3., when varying the Lagrangian LECT independently with respect to
the metric gµν and the linear connection Γλµν without imposing restrictions
on these dynamical variables, we obtained the semi-metric theory with the
connection (1.32) which is defined by the condition (1.31). This manifests a
close relation between the torsion vector Qµ and the nonmetricity vector Kµ

that appears in the Weyl theory [5]:

∇αgµν = Kαgµν .

Weyl constructed his theory of gravity on the basis of conformal transformations
of the interval ds2. Weyl’s theory is invariant under the transformation of the
metric of the following form:

gµν −→ g′µν = e2σgµν . (4.33)

These are the so-called Weyl transformations, parametrized by an arbitrary
scalar function σ = σ(xµ). Despite the mathematical elegance of this theory,
a quite serious objection was found that strongly depreciated Weyl’s gravity
model: the length standards and the clocks do not have an invariant meaning
in this theory, and in particular, they “depend on the history”. Having failed
to overcome this problem, the Weyl theory remained a beautiful geometrical
model without direct applications to physics.

However, taking into account the significance of the conformal symmetry in
physics, it is interesting to look for a possibility to include Weyl’s transforma-
tions (4.33) into a gravity theory.5

5This is once again demonstrated in another Dirac’s attempt to introduce the dilations by

assuming the existence of different types of standards [68].
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Here we outline a possible natural solution of the problem of the length stan-
dards by constructing the conformally invariant gravity theory of the Hilbert-
Einstein type in the Riemann-Cartan spacetime U4, [69].

The tetrad formalism proves to be most useful for our purposes, and we take
the tetrad and the local Lorentz connection fields, haµ and Γabµ, as the basic
independent dynamic variables. The crucial point is as follows: we postulate
that the conformal Weyl transformations (4.33) of the metric are induced by

haµ −→ h′aµ = eσhaµ,

Γabµ −→ Γ′abµ = Γabµ.

}
(4.34)

Under these transformations, the tetrad is scaled whereas the Lorentz connec-
tion remains invariant, hence the Riemann-Cartan curvature is not changed too:
R′abµν = Rabµν . However, the world connection is transformed in accordance
with (1.20) as

Γαβµ −→ Γ′αβµ = Γαβµ + δαβ∂µσ. (4.35)

These are the famous Einstein’s λ-transformations [70] which leave the cur-
vature (1.1) tensor Rαβµν(Γ) (constructed from the world connection Γαβµ)
invariant. It is important that the Riemann-Cartan geometrical structure is pre-
served by these transformations. This is evident from the fact that the metricity
condition (1.8) is not violated:

∇αgµν = 0 −→ ∇′αg′µν = 0.

In accordance with (4.35), the torsion tensor (1.3) is transformed as

Qαµν −→ Q′αµν = Qαµν + δα[µ∂ν]σ. (4.36)

A remarkable fact is that (4.36) affects the trace of torsion only

Qµ −→ Q′µ = Qµ −
3

2
∂µσ.

The rest of the irreducible parts of the torsion (1.13) are conformally invariant.
Now we will demonstrate that the group of local conformal transformations

introduced above (4.34) in the spacetime U4 provides a natural basis for the
description of the scale symmetry of both matter and gravitation.

At first, we consider the massless fermion field described by the Dirac action
1
c

∫
d4x
√
gLD with the Lagrangian (4.8) in which we put the rest mass equal

zero m = 0. The fermion action is explicitly invariant with respect to scale
transformations (4.34) provided the Dirac field is scaled in accordance with its
canonical dimension,

Ψ −→ Ψ′ = e−
3
2σΨ.

Let us note that the extra terms proportional to ∂µσ occurring in the transfor-
mation (4.34) are mutually cancelled, so there is no need to introduce additional
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Weyl fields. It is worthwhile to note that such an intrinsic conformal invariance
is actually provided by the torsion. Indeed, the variation of (4.8) with respect to
Ψ leads to the Dirac equation (4.13) in U4 (with m = 0): γµ (Dµ −Qµ) Ψ = 0.
This equation is explicitly conformally invariant due to the fact that the torsion
trace Qµ acts as the Weyl field.

Now we will show the possibility to construct a conformally invariant theory
of gravity in U4. Let us study the Hilbert-Einstein model with the action6

Sconf =

∫
d4x
√
g ϕ2R(Γ). (4.37)

To provide the conformal invariance, we introduced an additional field ϕ with
the scaling behaviour under (4.34)

ϕ −→ ϕ′ = e−σϕ,

in accordance with its canonical dimension. For the curvature scalar we obvi-
ously have R′(Γ) = e−2σR(Γ), whereas

√
g′ = e4σ√g. The role of the scalar field

ϕ is (as in the similar cases in the Riemann geometry) to introduce a natural
scale in the theory. Comparing (4.37) with the action (1.34) of the Einstein-
Cartan model, we notice that the scalar field square ϕ2 replaces 1

2κc and thus
plays the role of a Brans-Dicke-type variable coupling function.

The field equations of the conformally invariant theory of gravity in U4 can
be obtained by variation of (4.37) either with respect to the metric and the
torsion gµν , Q

λ
µν , or in the tetrad formalism with respect to the tetrad and the

local Lorentz connection haµ,Γ
a
bµ. Both methods yield the same result. In the

absence of the matter, we obtain the field equations

Gµν(Γ) = 0, (4.38)

Qλµν =
1

ϕ
δλ[ν∂µ]ϕ. (4.39)

In addition, we have to vary the action with respect to the scalar field ϕ.
However, the corresponding field equation, R(Γ) = 0, is redundant in view of
(4.38). The equation (4.39) shows that the torsion is expressed in terms of its
trace Qµ, for which the scalar field ϕ serves as a “potential”. Substituting (4.39)
into (4.38), we obtain

Gµν = − 6

ϕ2
Tµν , (4.40)

where

Tµν = ∂µϕ∂νϕ−
1

2
gµν∂αϕ∂

αϕ− 1

6

({}
∇µ
{}
∇ν − gµν

{})
ϕ2

is the so-called “improved” energy-momentum tensor of Callan-Coleman-Jackiw

[71, 72] for the scalar field ϕ. Here
{}

:=
{}
∇µ
{}
∇µ is the covariant d’Alembertian

6The Lagrangian of such a theory may also include all possible terms quadratic in the cur-

vature Rαβµν(Γ)Rαβµν(Γ), Rµν(Γ)Rµν(Γ), R2(Γ), etc., which are all conformally invariant.
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with respect to the Christoffel connection of the Riemannian space. The con-
traction of (4.40) yields the explicitly conformally invariant equation

{}
ϕ− R

6
ϕ = 0. (4.41)

Thus, we once again observe how the torsion provides the intrinsic confor-
mal invariance of the gravitational theory. The “wrong” sign of the energy-
momentum tensor Tµν of the scalar field in (4.40) manifests a non-physical
nature of ϕ which is actually the Goldstone type field [73, 74]. Using the con-
formal freedom, we can choose the gauge ϕ = const (which means the choice of
a certain length scale), and thus we arrive at the standard ECT.

Summarizing, we have demonstrated a natural way to introduce the Weyl
transformations (4.33) and to construct the conformally invariant theory of
gravity of the Hilbert-Einstein type in the Riemann-Cartan spacetime with
torsion. Distinctive features of such an approach are the postulate of the tetrad
scaling (4.34) as a source of conformal transformations (4.33) and the special
role of the torsion trace Qµ as an effective Weyl field.

One of the most important advantages is the absence of the problem of the
length scales, since Dµηab = 0 and, correspondingly, ∇αgµν = 0 (which are both
explicitly conformally invariant relations). Consequently, length standards are
conserved and there is no need in Dirac’s propositions of the two types of clocks
[68], etc.

The analysis of the possible relation of the torsion with conformal transfor-
mations clarifies the source of the vacuum production process of scalar particles
described by the Klein-Gordon equation with the conformal coupling in the ho-
mogeneous and isotropic spacetimes (see Sec. 4.4.). Indeed, we find Qµ = 0 due
to the Palatini equation (4.16) which results in the violation of the conformal
invariance of the Dirac equation.

4.3. Pre-Friedman stage of Universe’s evolution
and spacetime torsion

In this section, we turn to the study of the cosmological effects of ECT.
The theory of an expanding Universe – the Friedman cosmology based on

Einstein’s equations (with the initial data) – is the most spectacular achieve-
ment of GR. Numerous important physical effects predicted on its basis were
verified experimentally [27], among them the relict microwave radiation, the
cosmological red shift, etc. However, the problem of an initial state of the Uni-
verse remains unsolved within this framework. The presence of singularities in
the general solution of Einstein’s equations [86] is one of the central problems
of the theory of gravitational interactions. One can expect that a further de-
velopment of the fundamental principles of Einstein’s GR, that would allow
to take into account the effects of the gravitational and matter fields which
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are insignificant under the normal conditions (quantum and/or microstructural
properties, e.g.), may provide possible ways to solve these problems [87].

In connection with this, one of the most important achievements of the
Einstein-Cartan theory is the prediction of the avoidance (for an appropriate
choice of the torsion tensor and of its spinning sources) of singularities in the
cosmological models of the Universe. Such an opportunity is opened up when
the torsion violates the Penrose-Hawking energy condition [86], which in the
ECT takes the following form [7, 88]:

T eff
µν t

µtν ≥ 1

2
T eff
µν g

µν , (4.42)

where tµ is an arbitrary time-like vector.
Such a violation is not unexpected. The Einstein-Cartan theory, as we will

demonstrate in Chapters 5, 6, represents a special model of the gauge theory of
gravity for the Poincaré group P10 (a semidirect product of the Lorentz group
SO(1, 3) times the translation group T4). The non-compactness of the Lorentz
group results in the indefiniteness of the energy sign, which leads to a possibility
of violation of the condition (4.42).

It is important to note that in the regions occupied by the spinning mat-
ter, even in the case of chaotically oriented spins such that the mean value
〈Sλµν〉 = 0 vanishes, the macroscopic spin effects are different from zero. This
is due to the fact that in the equation (1.52) that has a microscopic mean-
ing before the averaging procedure, there are terms quadratic in spin. Let us
model the source of the gravitational field by the ideal spinning Weyssenhoff
fluid (see Sec. 4.1.), consisting of fermions with the particle density ρ, then

S2 = 1
2SµνS

µν = ~2

8 ρ
2. Averaging yields 〈S2〉 = 〈 12SµνS

µν〉 = ~2〈ρ2〉/8, where
the mean particle density 〈ρ〉 is related to the energy density ε via ε = Ak〈ρ〉1+k

for the equation of state p = kε with 0 ≤ k ≤ 1, and Ak is some constant de-
pending on the equation of state [120]. Then

〈S2〉 =
~2

8A
2

1+k

k

ε
2

1+k . (4.43)

If 〈S〉 = 0, one can understand 〈S2〉 as a squared dispersion of spin density
distribution about the zero mean value,

〈(∆S)2〉 = 〈(〈S〉 − S)2〉 = 〈〈S〉〈S〉 − 2S〈S〉+ S2〉 = 〈S2〉.

The existence of a nonzero 〈S2〉 here is similar to the existence of a nonzero
average kinetic molecular energy 〈p2/2m〉 6= 0, when the average momentum
vanishes, 〈p〉 = 0, for the classical gas in equilibrium.

Let us consider the homogeneous isotropic cosmological model with the metric

ds2 = − c2dt2 +R2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
, K = ±1, 0, (4.44)
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with the Weyssenhoff spinning fluid as a matter source. The parameter K = +1
(K = −1) corresponds to the closed (open) Universe, and K = 0 to the quasi-
Euclidean world [120]. Einstein’s equations (1.52) with the effective energy-
momentum tensor (4.7) reduce to

Ṙ2(t)

R2(t)
+
Kc2

R2(t)
=

8πG

3c2

(
ε− 8πG

c2
S2

)
, (4.45a)

−2R̈(t)

R(t)
− Ṙ2(t)

R2(t)
− Kc

2

R2(t)
=

8πG

c2

(
p− 8πG

c2
S2

)
. (4.45b)

The covariant conservation law of the effective energy-momentum tensor
Tµνeff ;µ = 0 yields

ε̇

ε+ p
= 3

Ṙ

R
. (4.46a)

Therefore, for the case of the dust (p = 0), we have7

ε =
ε0

R3
, S2 =

S2
0

R6
, (4.46b)

where ε0 and S0 are the integration constants which describe the energy density
and the particle density of the matter in the Universe at the moment of time
when R = 1. When obtaining (4.46b), we took (4.43) into account.

Substituting (4.46a) into the Friedman equation (4.45a), we find

Ṙ2 = −Kc2 +
8πGε0

3c2R
− 64π2G2S2

0

3c4R4
. (4.47)

As compared to GR, we have an additional term proportional to R−4 which
arises due to the (Γ-S)-interaction. It can be interpreted as a centrifugal po-
tential energy, and it is easy to see that this term leads to the absence of a
cosmological singularity. In particular, for the quasi-Euclidean Universe with
K = 0, the explicit solution of (4.47) reads

R(t) = 3

√
R3

min + 6πGε0t2/c2, R3
min =

8πGS2
0

c2ε0
. (4.48)

To make an estimate, if we assume that the Universe is filled with N ≈ 1080

nucleons (hence the total mass of matter ≈ 1053 kg), we find for the minimal
value of the cosmological scale factor Rmin ≈ 10−28. The corresponding minimal
radius of the Universe ≈ 10−2 m, and the maximal density ≈ 1057 kg/m3 [97].

Another estimate can be obtained if we replace the nucleon as an elementary
unit of matter with a hypothetical “fundamental atom” – the Planckeon [121].
The latter is a black hole with the mass of mpl ≈ 10−8 kg and the spin 1

2~.

7On the right-hand side of the equations, the averaged quantities are understood.
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Since the Compton wave length of particles λ = ~/mc cannot be greater than
the gravitational radius of a configuration, the Planckeon is a smallest possible
black hole [122]. Then, assuming that at an initial moment of time the Universe
(as the interior of a collapsing star) consisted of completely spin-polarized Fermi
fluid formed by 1061 Planckeons (to keep the total mass ≈ 1053 kg), we find for
the minimal radius of the Universe ≈ 10−15 m.

Since the spin is a vector and thus it obviously defines a prefered direction
in space, thereby breaking the spatial isotropy, it is perhaps more realistic to
consider anisotropic spatially homogeneous models. Let us study the Bianchi I
model with the metric

ds2 = − c2dt2 + a2(t)(dx2 + dy2) + b2(t)dz2,

where the two scale factors a = a(t) and b = b(t) describe a possible difference
of the cosmological dynamics along a prefered axis (z-coordinate) and in the
orthogonal plane.

The effective Einstein equations for this metric read

ȧ2

a2
+ 2

ȧḃ

ab
= κεeff , − ä

a
− b̈

b
− ȧḃ

ab
= κpeff ,

ä

a
+
ȧ2

a2
− b̈

b
− ȧḃ

ab
= 0.

Introducing the new variables

R3 := a2b, σ :=
ȧ

a
− ḃ

b
,

we recast this system into

3
Ṙ2(t)

R2(t)
=

8πG

c2

(
ε− 8πG

c2
S2

)
+

1

3
σ2,

−2R̈(t)

R(t)
− Ṙ2(t)

R2(t)
− Kc

2

R2(t)
=

8πG

c2

(
p− 8πG

c2
S2

)
+

1

3
σ2,

σ̇ + 3
Ṙ(t)

R(t)
σ = 0.

The last equation is easily integrated and yields the anisotropy expansion func-
tion (the difference of the Hubble functions):

σ =
σ0

R3
.

The equation of motion of spin (4.5) is also straightforwardly integrated to give

S =
S0

a2b
=
S0

R3
.

Substituting all this into the Friedman equation, for the Weyssenhoff dust
(p = 0) as a source of gravitational field, we find a modified version of (4.47)

Ṙ2 =
8πGε0

3c2R
− µ0

R4
,
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where we introduced a combination of the integration constants

µ0 =
64π2G2S2

0

3c4
− σ2

0

9
.

The qualitative behaviour of a cosmological solution depends crucially on the
balance between the spin and anisotropy: in simple terms, on the value of the
constant µ0. For µ0 = 0 one finds the usual singular Friedman solution for the
dust. For µ0 < 0, we also have a singular solution. However when µ0 > 0, the
solution does not have cosmological singularities [123]:

a = 3

√
3c2µ0

8πGε0
+

6πGε0

c2
t2 × exp

(
2σ0

9
√
µ0

arctan
4πGε0 t

c2
√
µ0

)
,

b = 3

√
3c2µ0

8πGε0
+

6πGε0

c2
t2 × exp

(
− 4σ0

9
√
µ0

arctan
4πGε0 t

c2
√
µ0

)
.

Besides the elimination of singularities in the cosmological solutions, the spin
terms produce another interesting effect by stabilizing the matter distribution,
so that for the closed Universes (only in this case) there exist static solutions
of the Friedman equations (4.45). For the dust, such a Universe has the size
≈ λf of a Compton wave length of a fermion with the mass mf , and the matter
density is about ρcr = m2

fc
4/G~2 (≈ 1057 kg/m3 for a nucleon), [125]. Such a

static solution

ds2 = − c2dt2 +R2
0

[
dr2

1− r2
+ r2dΩ2

]
(4.49)

coincides with the metric of Einstein’s Universe [120]. However, in contrast to
GR, here the matter density does not vanish, and the cosmological Λ-term is
absent.

The dynamics of the local small perturbations is an important issue in cos-
mology. Within the framework of GR, this problem was solved for the first
time by E.M. Lifshitz [124]. One can show that on the background of the static
solution (4.49), the density perturbation δε develops in the two exponential
modes

δε =
c2ω2

120G

[
C1 exp

(√
5

3
ωt

)
+ C2 exp

(
−
√

5

3
ωt

)]
,

where ω = 2πc/λ, and λ is a perturbation wave length; C1 and C2 are the inte-
gration constants. The development of the exponentially growing and decaying
modes is typical for any exact static solutions.

Another important type of perturbations is the occurrence of a global homo-
geneous isotropic motion of matter, that does not violate the spatial symmetry
of the model.

The static solution (4.49) obtained in the framework of the Einstein-Cartan
theory differs from the Einstein solution of GR with the Λ-term in that it turns
out to be stable with respect to this type of perturbations for the equation



4.3. Pre-Friedman stage of Universe’s evolution and spacetime torsion 79

R

R
0

R
0

I

II

t
1

t
1
’ t

2
t
3

tt
0

Figure 4.2: Cosmological scenario.

of state p = kε, with 0 ≤ k < 1. Indeed, small perturbations δR satisfy the
equation

δ̈R+ ω2(k)δR = 0, ω2(k) =
4πGε0

c2
(−3k2 + 2k + 1), (4.50)

where ε0 is the constant energy density of the solution, and ω2(k) > 0 for
0 ≤ k < 1.

These properties allow one to view such a static solution as the initial and
the final stages of the observable non-stationary picture of the Universe [125].
In such a model, the evolution of the Universe consists of the following stages
(Fig. 4.2): the time interval t0t1 describes the initial static state, when small
perturbations are quickly damped; at the moment t′1 a large fluctuation occurs
which is sufficient to form for the Universe observed today; the interval t′1t2
covers the initial stage of expansion with the dominating torsion effects; the
next interval t2t3 is a stage of the “standard” cosmology when the torsion ef-
fects are negligible and the solution is close to the Friedman one; finally, during
the interval t3t the Universe returns back to the static state. If the energy of
the initial perturbation does not manage to be spent on dissipative phenom-
ena during the expansion and contraction phases, the Universe contracts to a
smaller size than the original one R0 and returns to the initial scale after several
oscillations (the branch I), otherwise the damping is smooth (the branch II).
No matter how large the initial perturbation is, the expansion necessarily is
followed by a contraction (the closed Universe), and the contraction does not
reach a singularity due to the short-range spin term (∼ S2) in the Friedman
equations.

The issue of a transition from the static stage (t0t1) to the dynamical one
(t′1t2) is not completely clear in this model. In order to answer this question, we
consider in detail how the small homogeneous isotropic perturbations behave.
Up to now, we neglected the dissipative phenomena (i.e., the increase of the
entropy) and, as a result, we obtained the small harmonic oscillations (4.50) of
the scale factor around its equilibrium value R0. However, it is easy to see that
the second law of thermodynamics forbids the exact repetition of the previous
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cycles. Moreover, the increase of the entropy s, ds/dt > 0 (both at the expansion
stage, and at the contraction stage) turns out to be a natural mechanism that
drives the initially static Universe into an observable strongly non-stationary
mode. Indeed, the condition that the scale factor reaches an extremal value
Rextr is given by the Friedman equation (4.45a):

R2
extr

{
ε (Rextr, s)−

8πG

c2
S2(Rextr)

}
=

3c4K
8πG

. (4.51)

Evaluating the logarithmic derivative of (4.51), after some calculations, we find

dRmax
min

ds
= ± 4πG

3c2

R2
max
min∣∣∣R̈(Rmax
min

)∣∣∣ ∂ε∂s , ∂ε

∂s
> 0. (4.52)

The equation (4.52) demonstrates that the maximum of the scale factor Rmax

in the repeating cycles increases due to the irreversible phenomena such as
friction (for example, the viscosity of matter). This ultimately results in the
natural transition from the static pre-Friedman stage (t0t1) to the dynamical
Friedman stage (t′1t2).

Summarizing the analysis of the influence of spin on the cosmological evo-
lution of the Universe in the framework of the Einstein-Cartan theory, we can
make the following conclusion.

Already the simplest model of a spinning matter in the form of the Weyssen-
hoff fluid demonstrates that the torsion brings in a new essential bit to the
understanding of the spacetime structure of the initial state of the Universe.
However, as was noted above, the Weyssenhoff fluid represents a quasi-classical
limit of a real quantum matter with spin. Thus, the consistent analysis of cos-
mology in the Einstein-Cartan model should be performed also for the Dirac
spinor matter. Although the classical spinor fields do not eliminate8 singu-
larities [126], the quantum treatment of spinors [127] essentially confirms the
correctness of the results obtained for the Weyssenhoff fluid.

4.4. Production of scalar particles by cosmological
torsion field

One of the most important issues of the modern relativistic astrophysics is
the problem of the gravitational collapse, i.e., the study of the evolution of
massive gravitational systems (both, isolated objects and the Universe on the
whole) when all the internal resources of energy are exhausted. The analysis of
such a process in the classical approximation is based on Einstein’s equations
(the classical gravitation and the classical matter). The classical picture of the

8Due to space-like nature of the pseudovector of the spin, (Ψγµγ5Ψ)2 ≥ 0.
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gravitational collapse is based of these equations, for which all the key evolution
scenarios are established and classified: the equilibrium configurations, the cases
when the contraction stops under the gravitational radius, and actually the
case of a collapse when the matter is uncontrollably contracting under the
influence of gravitational forces. During the contraction, the matter can become
extremely dense (reaching the nuclear density 1017 kg/m3 and greater). Strictly
speaking, at this stage it is necessary to use the Einstein equation with the
source on the right-hand described by the averaged energy-momentum tensor
of the quantum matter9. At the final stages of the gravitational collapse at the
density greater than 1099 kg/m3 and the distance smaller than 10−35 m, it is
necessary to replace the classical equations by their quantum counterparts.

However, due to the great complexity of the problem of construction of the
full quantum version of Einstein’s equations (see Chapter 7), it is reasonable to
consider the semi-consistent problem as a first approximation, when the gravity
is treated classically and the matter - quantum-mechanically. The expediency
of such approximation is obvious since already in this picture one can expect
new features in the evolution of the gravitating configurations as compared to
existing processes at a classical level.

The external classical non-stationary gravitational field may lead to the in-
stability of vacuum of the quantized physical fields, i.e., to the production of
the respective particles. As we show here, the torsion (within the framework of
ECT) brings the new features to the particle generation process.

The classical dynamics of a massless scalar field ϕ will be described by the
Klein-Gordon equation with the conformal coupling (4.41), with the Riemann-
Cartan scalar curvature R(Γ) in place of R. The action for the scalar field has
the following form:

S =
1

c

∫
d4x
√
gLϕ, Lϕ = − ~c

2

(
gµν∂µϕ∂νϕ+

R(Γ)

6
ϕ2

)
. (4.53)

We rewrite the metric (4.44) of the quasi-Euclidean (with K = 0) homoge-
neous isotropic Universe as

ds2 = a2(− dη2 + γikdx
idxk), (4.54)

introducing the conformal time cdt/R(t) = dη and denoting the new scale factor
a(η) = R(t(η)). The three-dimensional Euclidean metric γik is not necessarily
written in Cartesian coordinates. Furthermore, we assume that the evolution of
the Universe is described by the cosmological solution (4.48).

We model the source of the external torsion field as a massless fermionic fluid
described by the Dirac equation (4.18) (with mΨ = 0) with the spin directed

9The averaged energy-momentum tensor of matter is usually understood as the result of the

quantum averaging over the pure states, for example, over the space of occupation numbers.
But because of the fact that the system during the evolution can come to a thermodynamic

equilibrium, it seems to be necessary to make also a statistical averaging over the equilibrium

distribution [75] (see Sec. 7.2.).
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along the axis z. The torsion is then represented by the pseudotrace that has
the form Q̌µ = (0, 0, 0, Q), where Q = κc~2ρ and ρ is the particle density of
fermions. The conservation law of the number of particles in the metric (4.54)
yields Qa2 = ~

2κcρ0 with the integration constant ρ0 that gives the fermion
particle density at the moment when a = 1.

Introducing a new variable for the scalar field χ = aϕ, we get the Lagrange
function

Lχ =
~c
2

∫
d3x
√
γ
{
χ̇2 + χ∆χ− Q2

0

a4
χ2
}
. (4.55)

Here the dot denotes the derivative with respect to the conformal time η, the
3-metric γik determines the integration measure

√
γ = (detγik)1/2 and the

covariant Laplacian ∆ = γik
{}
∇i
{}
∇k, and Q0 = κc~2ρ0 is the parameter with the

dimension of 1/length which is proportional to the particle density of fermions
that create the spacetime torsion.

Let us decompose the redefined scalar field

χ(x, η) =
∑
n

χn(η)Zn(x) (4.56)

with respect to the complete orthonormal system of eigenfunctions Zn(x)

∆Zn(x) = −ω2
nZn(x),∫

d3x
√
γ Zn(x)Zm(x) = δnm,

 (4.57)

of the 3-dimensional Laplace operator, where the collective index n labels the
whole set of eigenvalues ω2

n. For the quasi-Euclidean model, the spectrum of
the Laplacian is continuous, so the sum over the eigenmodes should be actually
understood as an integral with an appropriate choice of the measure.

Substituting (4.56) and using (4.57), we rewrite the Lagrange function (4.55)
in terms of an infinite set of discrete degrees of freedom of the scalar field χn(η):

Lχ =
~c
2

∑
n

{
χ̇2
n − ω2

nχ
2
n −

Q2
0

a4
χ2
n

}
.

The corresponding equation of motion

χ̈n(η) + Ωn
2(η)χn(η) = 0, Ωn

2(η) = ωn
2 +

Q2
0

a4(η)
(4.58)

represents a discrete non-Riemannian version of (4.41).
Introducing as usual the canonical momenta10, pn = ∂Lχ/∂(cχ̇n) = ~χ̇n we

construct the Hamilton function

Hχ =
∑
n

pncχ̇n − Lχ =
~c
2

∑
n

{
(pn/~)2 + ω2

nχ
2
n +

Q2
0

a4
χ2
n

}
.

10In χ̇n = dχn/dη the variable η has the dimension of length, so we need a factor c to

obtain the velocity cχ̇n with the correct dimension.
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The same Hamiltonian can be alternatively derived from the metrical energy-
momentum tensor [71, 72]

Tµν=~c
{
∂µϕ∂νϕ−

1

2
gµνg

αβ∂αϕ∂βϕ+
1

6

(
Gµνϕ

2 −
{}
∇µ
{}
∇νϕ2 + gµν

{}
ϕ2
)

+ Q̌µQ̌νϕ
2 − 1

2
gµνg

αβQ̌αQ̌βϕ
2

}
. (4.59)

The Hamilton function is then recovered as the integral

Hχ = a2

∫
d3x
√
γ T00. (4.60)

The scalar field is quantized in a standard way by treating χn(η) and the
canonically conjugated momenta pn(η) as operators satisfying the equal-time
commutation relations

[χm(η), χn(η)] = 0, [pm(η), pn(η)] = 0, [χn(η), pm(η)] = i~ δnm. (4.61)

To introduce the particle interpretation, we decompose the operator χn(η) into
the two complex-conjugate solutions (un, u

∗
n) of the equations (4.58):

χn(η) = anun(η) + a∗nu
∗
n(η). (4.62)

The basis functions (un, u
∗
n) are chosen so that they satisfy the normalization

conditions
unu̇

∗
n − u̇nu∗n = i. (4.63)

The creation an
∗ and annihilation an operators satisfy

[an, am] = 0, [an
∗, am

∗] = 0, [an, am
∗] = δnm.

These standard commutation relations follow from (4.61)-(4.63).
A detailed analysis of the particle interpretation of the system can be found

in [61]. Inserting (4.62) into the Hamilton function, we find

Hχ =
~c
2

∑
n

Ωn(η)
{
En(anan

∗ + an
∗an) + Fn(an)2 + Fn

∗(an
∗)2
}
, (4.64)

where we denoted the dimensionless functions

En(η) =
|u̇n|2

Ωn(η)
+ Ωn(η)|un|2, Fn(η) =

(u̇n)2

Ωn(η)
+ Ωn(η)(un)2. (4.65)

Note that (En)2 − |Fn|2 = 1 in view of (4.63).
We choose the initial conditions {un, u∗n, u̇n, u̇∗n}|η=η0 at an arbitrary moment

of time η = η0 so that to satisfy (4.63) and to make the Hamilton function (4.64)
diagonal by setting En(η0) = 1 and Fn(η0) = 0:

un(η0) = un
∗(η0) =

1√
2Ωn(η0)

, u̇n(η0) = −u̇∗n(η0) = − i
√

Ωn(η0)

2
.
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The operators an and an
∗ are the creation and annihilation operators of scalar

particles at the initial moment η0. This interpretation is also preserved for
any η if Ωn is constant, then the Hamiltonian remains diagonal at all times.
However, for the time-dependent Ωn(η) the Hamilton function (4.64) ceases to
be diagonal in terms of an and an

∗ at any time η > η0. This means that the
physical vacuum is unstable and hence the notion of a particle is not constant
but depends on time, which is manifest in the production of scalar particles.

In GR this effect is absent in the conformally-flat space-time (4.54) for the
model under consideration due to the conformal invariance of the scalar field
theory. In the ECT, the particle creation effect is nontrivial which is explained
by the fact that the fermion torsion sources violate the conformal invariance of
the field ϕ, as we noted in Sec. 4.2..

Thus, at an initial time η = η0, we have the particle interpretation of ϕ. The
field energy in n-mode is εn = 1

2~cΩn(η0) (anan
∗ + an

∗an). In order to find
the particle interpretation for an arbitrary time, we use the diagonalization
method of the Hamilton function (4.64). In accordance with this method, it
is necessary to introduce the new (time-dependent) creation and annihilation
operators An

∗(η) and An(η) by

an = α∗n(η)An(η) +βn(η)An
∗(η), an

∗ = αn(η)An
∗(η) +β∗n(η)An(η), (4.66a)

where the coefficients αn(η) and βn(η) satisfy the conditions

|αn(η)|2 − |βn(η)|2 = 1, Fnβn = (1− En)αn. (4.66b)

In terms of these operators, the Hamilton function (4.64) has diagonal form

Hχ =
~c
2

∑
n

Ωn(η) {An∗(η)An(η) +An(η)An
∗(η)} .

At any given time, the field particles are determined by the time-dependent
creation An

∗(η) and annihilation An(η) operators. By construction, we have
αn(η0) = 1, βn(η0) = 0 and hence the operators coincide An(η0) = an, and
An
∗(η0) = an

∗ at the initial moment of time η0.
The instantaneous physical vacuum |0η〉 is defined as the quantum state that

satisfies An(η)|0η〉 = 0. For an arbitrary operator Φ we introduce the normal
ordering

Nη(Φ) = Φ− 〈0η|Φ|0η〉.

This obviously depends on time: one subtracts the vacuum average with respect
to the instantaneous vacuum, thus removing the (usually diverging) contribu-
tion of the vacuum excitations a η. In order to find the physical effects due to
the particle production, one needs to compute vacuum averages with respect to
the initial vacuum:

〈0η0 |Nη(Φ)|0η0〉 = 〈0η0 |Φ|0η0〉 − 〈0η|Φ|0η〉.
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Particularly important are the operators of number of particles An
∗(η)An(η)

(in the n-th mode) and the operators of the energy-momentum Ti
k(x). The

latter is given explicitly in (4.59). Direct computation of the vacuum averages
of the normal ordered operators yields:

n(η) = 〈0η0 |Nη(An(η)An
∗(η))|0η0〉 =

∑
n

|βn|2,

E(η) = −〈0η0 |Nη(T0
0)|0η0〉 =

~c
a4(η)

∑
n

Ωn(η)|βn|2,

P1(η) = 〈0η0 |Nη(T1
1)|0η0〉 =

1

3
{E(η)− γ(η)} ,

P2(η) = 〈0η0 |Nη(T2
2)|0η0〉 =

1

3
{E(η)− γ(η)} ,

P3(η) = 〈0η0 |Nη(T3
3)|0η0〉 =

1

3
{E(η) + 2γ(η)} ,



(4.67)

where

γ(η) =
~cQ2

0

a8(η)

∑
n

{
|un|2 −

1

2Ωn(η)

}
.

One can verify that for the off-diagonal components of the energy-momentum
tensor, the vacuum averages vanish, 〈0η0 |Nη(Ti

k)|0η0〉 = 0 with i 6= k. The total
number of particles n(η) created from vacuum by the torsion field, as well as
the energy density E(η) and the anisotropic pressure P1(η),P2(η),P3(η) of the
created matter are determined by the solutions un(η) of the evolution equation
(4.58). From (4.67), one can obtain the equation of state for the created matter

E = P1 + P2 + P3.

It is impossible to solve the oscillator equation (4.58) exactly for the time-
dependent frequency Ωn(η) with an arbitrary cosmological evolution a = a(η).
So, in order to obtain numerical estimates for (n, E ,Pi), one needs a pertur-
bation scheme to construct approximate solutions of the equation (4.58) with
the given initial conditions. As a first step, we recast the differential equation
(4.58) into the equivalent integral equation of Volterra type:

un(η) =
e−iΩn(η0)(η−η0)√

2Ωn(η0)
+

∫ η

η0

dξ G(η − ξ) ∆Q2(ξ)un(ξ),

where ∆Q2(η) = Q2(η0) − Q2(η) = Q2
0

{
1/a4(η0)− 1/a4(η)

}
, and G(η − ξ) is

the Green function that satisfies

G̈(η − ξ) + Ωn
2(η0)G(η − ξ) = δ(η − ξ).
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The resulting integral equation is then solved iteratively, and the solution reads

un(η) = un
(0)(η) + u(1)

n (η) + · · ·+ u(m)
n (η) + . . . ,

un
(0)(η) =

e−iΩn(η0)(η−η0)√
2Ωn(η0)

,

un
(m)(η) =

∫ η

η0

dξ G(η − ξ) ∆Q2(ξ)un
(m−1)(ξ).


(4.68)

We take G(η − ξ) = sin{Ωn(η0)(η−ξ)}
Ωn(η0) as the explicit form of the Green function.

We choose the initial time η0 as the moment when the scale factor a(η) takes
the minimal value a(η0) = amin = Rmin (see Sec. 4.3.). Limiting ourselves to
the first two terms in (4.68), from (4.67), (4.68) we can obtain the numerical
estimates for the particle number, the energy and the pressure of the created
matter. In the lowest order we find

n(η) =
∑
n

(Ωn(η)− Ωn(η0))
2

2Ωn(η)Ωn(η0)
,

E(η) =
~c

a4(η)

∑
n

(Ωn(η)− Ωn(η0))
2

2Ωn(η0)
,

γ(η) =
~cQ2

0

a8(η)

∑
n

Ωn(η)− Ωn(η0)

2Ωn(η)Ωn(η0)
.


(4.69)

The details of the computations can be found in [78]. Evaluation of the sums in
(4.69) (more exactly, of the integrals) is a nontrivial task. Here we summarize
the qualitative results.

1. The maximal number of created particles corresponds to the scale factor
a0 ≈

√
2amin and the density of created particles is equal to ≈ Q3

0/a
3
min, that is

directly related to the density of fermions generating the spacetime torsion.
2. At the large distances (far from the Planck region a > a0), the intensity

of the scalar particle production by the torsion field drops. Conversely, due to
the high power of the inverse scale factor in the expressions for n (η) , E(η), at
the small distances the process of scalar particle production by the torsion field
dominates over the similar processes of the matter particle production in GR.

3. The account of the back reaction of the created particles on the classical
evolution of the isotropic Universe should lead to its anisotropization in the early
epochs due to an extra contribution γ(η) making the pressure anisotropic. The
estimate of the maximal anisotropization degree yields the times close to a0. At
the large distances (late epochs with a → ∞), γ(η) quickly decreases to zero.
As a result, during Universe’s evolution, the isotropy is recovered.



5
Kinematics of gauge theories of gravity

5.1. Special aspects of gauge approach in gravitation

Mathematical beauty of the classical GR as a dynamical theory of a three-
dimensional spatial geometry, as well as its agreement with the present-day ex-
perimental data in cosmology, astrophysics and planetary astronomy, allow one
to view GR as a fair description of the macroscopic gravitational phenomena.
However, the existence of essential difficulties in it (such as the quantization
problem [92] and the singularity problem [86]) at small distances apparently
manifests its limited validity in the microworld.

Recently numerous attempts were made to formulate the microscopic gravity
theory within the framework of a consistent gauge-theoretic approach. This was
essentially motivated by the successful construction of renormalizable unified
gauge models of the weak and electromagnetic, as well as of the strong interac-
tions. On the other hand, construction of the microscopic gravity theory appears
to be a necessary step to establish the geometrical structure of supergravity [93]
as the theory of the local supersymmetry.

The gravity theory, understood in a broad sense as the geometrodynamics1 of
the spacetime, is much richer and more complex in the differential-geometrical
aspects than the gauge theories of internal symmetries. As a result, there exists
a variety of approaches and interpretations of the gravitational field as a gauge
one, and there is no clear understanding of the answer to the key question: is
gravity a gauge theory and in which sense? This question includes the three

1That is the dynamics of the geometrical structure of spacetime.
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aspects [97]: 1) What is the gauge group of the theory; what is the role of
the general coordinate transformations? 2) What are the relevant gauge fields;
what is their relation with the geometrical objects on the spacetime manifold;
in particular, what is the status of the metric? 3) What is theory’s dynamics;
is it determined by the requirements of the gauge invariance?

In view of these issues, it is reasonable to consider in detail the difficulties
arising in the development of a consistent gauge approach to the gravity theory.

To begin with, we have to clarify the terminology, because different re-
searchers understand the meaning of expressions “gauge field” and “gauge the-
ory” in different ways. We define the gauge theory as a physical theory in which
the fundamental dynamical variable –the gauge field– is a connection on a prin-
cipal bundle. Among such theories, we distinguish the consistent models that
do not contain any additional postulates of the non-gauge type from the in-
consistent theories containing such assumptions2. Besides that, certain theories
that are not covered by this definition, still have some features of the gauge the-
ories, such as the presence of arbitrary functions in the description of the fields
and the existence of constraints; we call them pseudo-gauge theories. There are
many examples: the theory of massless fields of arbitrary spin; generally covari-
ant models of material fields in a curved space; the simple supergravity [93];
the general relativity theory [35]. Quantization of the gauge and pseudo-gauge
theories takes into account their common feature of the invariance with respect
to an infinite group of local transformations, and this similarity brings in a
terminological confusion, which results in the unfortunate statements, such as
“GR is the gauge theory of the group of general coordinate transformations”.

The issue of finding the gauge group for the gravity theory is one of the most
complicated ones, since the gravity is related to spacetime symmetries, in con-
trast to the gauge fields of “internal” symmetries. However, being well-defined
as global symmetries in the flat Minkowski space, the “localized” spacetime
symmetries become general coordinate transformations, losing their original fea-
tures. Moreover, there is a difficulty of interpretation of the “local” translations
which are usually identified with the infinitesimal general coordinate transfor-
mations [12, 13]. The corresponding “gauge fields” –the tetrads– do not have a
standard (Yang-Mills) transformation law, since they are not connections.

As it is clear now, all these and related inconsistencies arise from the confu-
sion of the gauge structure with the coordinate invariance. However, they should
be carefully distinguished, because the group of general coordinate transforma-
tions does not have a direct relation to the gauge theory of gravity [96]. If
one views the general coordinate transformations simply as the maps between
charts covering the spacetime manifold, they obviously do not carry any dynam-
ical meaning. The invariance with respect to such passive transformations is a
common property of all covariant physical theories, not only of gravity. More-

2An example of the latter is an ad hoc postulate of the non-dynamical vanishing of the
torsion of a linear connection (see below).
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over, using modern coordinate-free methods for the description of the physical
systems (the exterior calculus), one can provide the general covariance without
any appeal to the gravity theory. There is also another point of view on general
coordinate transformations as the group of local diffeomorphisms of the space-
time manifold. These are active transformations due to the motion of spacetime
points. But also in this case, the study of the invariance properties of physical
systems is not related to gravity since the corresponding mathematical formal-
ism of the Lie derivatives along vector fields, defined by diffeomorphisms, does
not demand the existence of a geometrical structure on the manifold.

Below we show that it more natural to describe the action of the spacetime
symmetries not on the base –the spacetime itself– but rather in bundle of affine
or linear frames over it. Then the gravitational field turns out to be a connection
in this principal fiber bundle. There is a natural homomorphism from the bun-
dle of frames to the tangent bundle, using which the gauge gravitational field
induces geometrical structures on the spacetime: the connection and the metric.
The issue of the status of the metric in this approach has an unexpected dual
solution. Namely, the metric structure is explained with the help of a sponta-
neous symmetry breaking mechanism when the reduction of the inhomogeneous
general affine group GA(4, R) to linear group GL(4, R) allows to interpret the
tetrad field as a nonlinear realization of the connection, and on the other hand,
the reduction of GL(4, R) to the Lorentz group adds a Goldstone contribution
to the metric. Roughly speaking, the metric turns out to be some hybrid of
the two popular interpretations – the translational gauge field (in the nonlinear
realization) and the Goldstone field taking values in the homogeneous space
GL(4, R)/SO(3, 1).

In the consistent gauge approach to the gravity theory, the largest difficulties
arise when constructing its dynamics. This is explained by an essentially non
unique definition of an action by the gauge invariance. In chapter 6, we will
consider some models, for which the study of the physical properties can lead
to the final establishment of the structure of the gauge gravity theory.

5.2. Bundle of frames and generalized affine
connection

We construct the consistent gauge scheme for the gravitational field using the
mathematical theory of the generalized affine and linear connections in the
bundles of frames over the spacetime M4. We understand the latter as the four-
dimensional smooth (C∞) manifold. When discussing the geometrical aspects
of the bundle spaces, we use the local coordinates writing the basic objects in
components and defining their transformation laws. Certainly, we then lose the
advantages of coordinate-free methods that make a stress on the global invari-
ant meaning of various operations, however, the component formalism is more
familiar to physicists. A brief summary of the basic mathematical definitions
(manifold, forms, bundles, connection, etc.) is given in Appendix A1.
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Bundle of linear frames

A linear frame at the point x ∈ M4 is the basis {ea} = {e0, e1, e2, e3} of the
tangent space TxM . The set of frames Gx at this point is isomorphic to the
general linear group GL(4, R), since any frame is obtained by a linear trans-
formation from the standard basis Ea =

{
E1 = (1, 0, 0, 0) , E2 = (0, 1, 0, 0),

E3 = (0, 0, 1, 0) , E4 = (0, 0, 0, 1)
}

in R4 ∼= TxM : ea = LbaEb with the 4 × 4
matrix L ∈ GL(4, R). The union

⋃
x∈M4

Gx = L(M), provided with a smooth

structure, is a (4 + 42)-dimensional manifold, where the natural projection
π : L(M) → M maps the linear frame ea at the point x to x. The manifold
L(M) is called the bundle of linear frames. This is the principal bundle with
the structural group GL(4, R); the right action GL(4, R) on L(M) is evident:
ea ∈ Gx → e′b = eaL

a
b ∈ Gx for L ∈ GL(4, R). The tangent bundle T (M) may

be viewed as an associated with L(M) bundle with the standard fiber R4.
The connection in L(M) is called the linear connection in M4. It introduces

the parallel transport in L(M) and induces the parallel transport of the tangent
vectors in the associated T (M) and defines the covariant differentiation of the
vector fields. Choosing the local coordinates {xµ} on M4 and a cross-section
σ: M → L(M), we find the 1-form on the base σ∗ω = ωbaµE

a
bdx

µ which is
uniquely determined by the linear connection form ω on L(M) with the values in
the Lie algebra gl(4, R). Here Eab is the natural basis of the Lie algebra gl(4, R),
i.e., the 4× 4 matrix with elements at the intersection of a-th column and b-th
line equal to 1, and with the remaining elements equal zero. The coefficients
ωbaµ of this form are called the coefficients of the local linear connection. They
define the coordinate notation of the covariant derivative of the tangent vector
∇µva = ∂µv

a + ωabµv
b, where the vector v = vaea is decomposed with respect

to the basis ea(x) that is defined by the cross-section σ. When the cross-section
is changed, σ → σ′, the connection coefficients are transformed as follows:

ωabµ −→ ω′
a
bµ = Lacω

c
dµL

−1d
b + Lac∂µL

−1c
b, (5.1)

where the matrix of the linear transformation is determined from

ea
′(x) = eb(x)Lba(x).

In the bundle of linear frames L(M), one can introduce (absolutely indepen-
dently from the connection) another basic object – the canonical 1-form θ. This
R4-valued form is defined on L(M) by the equation

dπ(X) = θa(X)ea, (5.2)

where X ∈ Tu(L(M)), u = (x, ea). The canonical 1-form is horizontal, i.e., it
vanishes on vertical (tangent to the fiber) vectors

θa(X) = 0 ⇐⇒ dπ(X) = 0.

This property is obvious. In addition, θ is equivariant, i.e., for any L ∈ GL(4, R)

R∗Lθ
a ≡ θa ◦ dRL = L−1a

bθ
b.
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Indeed, let u = (x, ea) ∈ L(M), and dπ (X) = θa(X)ea. Then the right action
RLu = (x, eaL

a
b), and its differential dRL(X) ∈ TRLuL(M), as a result,

(R∗Lθ
a) ea = dπ(dRLX) = dπ(X) = (θa(X)L−1c

a) (Lbceb).

In the local notation, the canonical form determines the coframe 1-form ha :
Tx(M) → R4, i.e., the basis of the cotangent space T ∗aM dual to ea. If the
cross-section is chosen σ: M → L(M) [i.e. the field of frames ea(x)], then we
have ha (x) = (σ∗θa) (x), where ha (eb) = δab .

With the connection ω and the canonical form θ defined on the bundle of
linear frames, one can introduce a parallelization of L(M). Namely, one can:
1) map each element of the Lie algebra gl(4, R) to a fundamental3 vertical vector
field; in particular, map the basis of the Lie algebra gl(4, R): Eab → E∗ab, so
that ω (E∗ab) = Eab, and 2) map each vector from R4 to a standard horizontal
vector field, in particular map the basis Ea → Ea

∗, so that θ (Ea
∗) = Ea. Then

4 + 42 vector fields Ea
∗, E∗ab constitute at each point u ∈ L(M) the basis of

the tangent space Tu(L (M)).
The linear connection in L (M) is characterized by the curvature and the

torsion. Let us define the curvature 2-form R of the linear connection ω as
covariant exterior differential4

R = Dω = dω(h). (5.3)

The torsion 2-form Q of the linear connection ω is defined as the covariant
exterior differential of the canonical form θ:

Q = Dθ = dθ(h). (5.4)

The 2-forms R and Q satisfy the structure equations

Qa = dθa + ωab ∧ θb,
Rab = dωab + ωac ∧ ωcb,

}
(5.5)

where we made the expansion with respect to the natural bases in R4 and
gl(4, R): Q = QaEa, θ = θaEa, R = RabE

b
a.

Introducing the local coordinates xµ on the manifold M4, we naturally define
the corresponding cross-section in L(M) by attaching the coordinate basis {∂µ}
at x ∈M4. Then the local coordinates in L(M) are (xµ, hµa), where ea = hµa∂µ,
and it is obvious that dethµa 6= 0. Determining the inverse matrix haµ so that
haµh

µ
b = δab , we obtain from the definitions (5.2)-(5.4) the local expressions for

the canonical 1-form

θa = haµ dx
µ (5.6)

3For definitions, see Appendix A3 and references therein.
4In (5.3) and (5.4), h denotes the projection to the horizontal subspace of TL(M).
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and for the connection 1-form

ωab = haα Γαβν h
β
b dx

ν + haµdh
µ
b . (5.7)

Then using the structure equations (5.5), we arrive at the ordinary tensor ex-
pressions for the torsion (1.3) and the curvature (1.1), constructed from the
components of the linear connection Γαβµ.

Bundle of affine frames

The tangent space Tx(M) ∼= R4 may be considered as the affine space A4. In
this case, we call it the tangent affine space and denote Ax(M). Its basis, which
is called the affine frame, includes the point z ∈ Ax(M) and linear frame ea.
The set of affine frames at the point x ∈ M4 is isomorphic to general affine
group GA(4, R), since an arbitrary affine frame (z, ea) is obtained using the
affine transformation A ∈ GA(4, R) from the natural frame (0, Ea) in A4. The
set of all affine frames on M is called the bundle of affine frames A(M). The
projection π : A(M) → M maps a frame at the point x to this point x ∈ M4.
The bundle A(M) is the principal bundle over M with the structural group
GA(4, R) with an obvious definition of the group action.

A natural realization of affine transformations in Ax(M) is obtained, if we
view the affine space A4 as a hypersurface in R5 with a fixed fifth coordinate.

Then an arbitrary element of A4 is represented as a column

(
z

1

)
, and the action

of the affine group GA(4, R) in the affine space A4 is described by the 5 × 5

matrix of the form g =

(
L b

0 1

)
, where L ∈ GL(4, R) and b ∈ R4:(

z

1

)
−→

(
z′

1

)
=

(
L b

0 1

)(
z

1

)
=

(
Lz + b

1

)
.

The bundle of affine frames A(M) and the bundle of linear frames L (M) are
closely related to each other and to the associated tangent bundles. In partic-
ular, the affine tangent bundle represents an important example of a soldered
bundle, the properties of which are reviewed below.

We say that the bundle E(M,F,G, P ) associated with the principal bundle
P (M,G) is soldered to the base M , if [3]:

1) the fiber F of the bundle G is a homogeneous factor-space F = G/H,
where H ⊂ G is a stationary subgroup (or stabilizer), and the dimension of F
is equal to dimension of the base M ;

2) there is a global cross-section σ : M → E, and there is a natural isomor-
phism between the tangent bundle T (M) and the space of all vectors tangent
to the fibers F at the points of the cross-section σ(M). In other words, the
“soldering” of the bundle E to the base M means that the fibers F are tangent
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to the manifold M (in the sense of coincidence of the tangent spaces) at the
soldering point set by the cross-section σ. Furthermore, the bundle T̃ (M) of the
tangent spaces Tσ(M)F may be considered as a vector bundle associated with

the principal bundle P̃ (M,H), obtained as a submanifold in P (M,G) when
homeomorphisms F → Fx are such that the “center” of F is mapped into
σ(M) – the soldering point.

Let us consider the most important case when the fiber F of the soldered
bundle E is a weakly reductive homogeneous space. This means that the Lie al-
gebra G of the structural group G is decomposed into the sum of the subalgebra
H (corresponding to the subgroup H) and the vector space V

G = H⊕ V (5.8)

so that [H, H] ⊂ H, [H, V ] ⊆ V , where [ , ] is the commutator in the Lie
algebra. The tangent space Tσ(M)F may be identified with V .

A V -valued 1-form θ̃ on the principal bundle P̃ (M,H) is called a soldering
form if it satisfies the following conditions:

1) θ̃(X̃) = 0 ⇐⇒ dπ̃(X̃) = 0, where X̃ ∈ T P̄ , i.e., it vanishes on vertical
vectors;

2) under the right action R∗hθ̃ ≡ θ̃ ◦ dRh = h−1θ̃h, where h ∈ H.

One can show [3] that the existence of the soldering 1-form θ̃ is necessary and
sufficient condition for the bundle E to be soldered to M .

Now we consider in details the relation of the bundles of affine and linear
frames. It is obvious that L(M) may be realized as a natural subbundle A(M).
The corresponding embedding γ : L(M)→ A(M) is defined by the map

ϕ : A(M) −→ R4, (5.9)

such that

R∗g−1 ◦ ϕa = Aabϕ
b + ba, g =

(
A b

0 1

)
∈ GA(4, R).

Then the subbundle L(M) is determined as a kernel

L(M) = {u ∈ A(M) |ϕ(u) = 0}.

The canonical projection β : A(M)→ L(M) can be defined as

β(u) = RΦ(u) ◦ (u), Φ(u) =

(
1 ϕ(u)

0 1

)
, u ∈ A(M),

where 1 is the unit in GL(4, R). It is obvious that β ◦ γ = idL(M). In local
coordinates, the embedding of L (M) into A(M) maps the linear frame (x, ea)
to the affine frame (x, Ox, ea), where Ox is the origin of the affine tangent
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space Ax. Conversely, the projection β : (x, z, ea)→ (x, ea). Using the above-
mentioned realization of the general affine transformations, and consequently,
of the affine frames as a 5× 5 matrix of the following form:

u =

(
L z

0 1

)
, L ∈ GL(4, R), z ∈ R4,

we get explicitly the mapping ϕ: A(M)→ R4. For (x, u) ∈ Ax, it is defined as

ϕ(u) = −L−1z.

The matrix inverse to g =

(
A b

0 1

)
reads g−1 =

(
A−1 −A−1b

0 1

)
, and it is

easy to show that under the right group action

Rg−1u = ug−1 =

(
L z

0 1

)(
A−1 −A−1b

0 1

)
=

(
LA−1 −LA−1b+ z

0 1

)

we have the correct transformation property

R∗g−1 ◦ ϕ(u) ≡ ϕ(Rg−1u) = −(LA−1)−1(z − LA−1b)

= −AL−1z + b = Aϕ(u) + b.

Defined as the kernel ϕ(u) = 0, the subbundle L (M) is formed by the set of

matrices

(
L 0

0 1

)
∈ GL(4, R), which is indeed the bundle of linear frames. The

canonical projection is also quite transparent in the matrix representation:

β(u) = RΦ(u) ◦ u =

(
L z

0 1

)(
1 ϕ(u)

0 1

)

=

(
L Lϕ(u) + z

0 1

)
=

(
L 0

0 1

)
.

The connection in the bundle of affine frames A(M) is called a generalized
affine connection in M4. The generalized connection 1-form on A(M) is denoted
as Ω. Using the above-mentioned reduction of A(M) to L(M), one can reduce
the study of the generalized affine connection to the investigation of the linear
connection and some R4-valued 1-form on the bundle of linear frames L(M).

Since the connection 1-form in the principal bundle is uniquely restored in
terms of the set of the local forms on the base (satisfying certain compatibility
condition in the intersections of local maps) [3], we will consider everything
in the local coordinates. Given a cross-section σ: M → A(M), we define the
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field of affine frames u(x) =

(
L(x) z(x)

0 1

)
on M4, and the generalized affine

connection 1-form Ω induces the form Ωσ = σ∗Ω on the base space. Since the
Lie algebra of the general affine group is decomposed into the (semidirect) sum

ga(4, R) = gl(4, R) +R4,

the local connection form Ωσ also can be decomposed into the sum Ωσ = ω̃+ ϕ̃.
It is more convenient to use the matrix representation for the Lie algebra

ga(4, R) =


(
a b

0 0

)
, a ∈ gl(4, R), b ∈ R4


and write the local connection form as the 5× 5 matrix

Ωσ =

(
ω̃ ϕ̃

0 0

)
. (5.10)

Now we will show that this generalized affine connection determines the linear
connection and some tensor form in M4. For that purpose, we consider the
transformation of the connection (5.10) under the change of the cross-section
σ → σ′. Then we have

u′(x) = Rg(x)u(x) = u(x)

(
A(x) b(x)

0 1

)

and Ωσ′ = gΩσg
−1 + gdg−1. Explicitly,(

ω̃′ ϕ̃′

0 0

)
=

(
A b

0 1

)(
ω̃ ϕ̃

0 0

)(
A b

0 1

)−1

+

(
A b

0 1

)
d

(
A b

0 1

)−1

=

(
Aω̃A−1 +AdA−1 Aϕ̃− db− (Aω̃A−1 +AdA−1)b

0 0

)
.

Upon restriction on L(M), the form ω̃ is a 1-form of linear connection on
M4, γ∗ω̃ = ω, with the correct transformation law (5.1). The 1-form ϕ̃ is not a
tensor form, because under translations (b 6= 0), it transforms inhomogeneously.
However, due to the reduction of A(M) to L(M), one can define with its help
a tensor form. For this purpose, we pull back the 0-form ϕ, that introduces the
reduction map (5.9), to the base and compute its covariant exterior differential

Dϕ = θ̃. The result is the R4-valued 1-form. In the matrix representation,(
θ̃

0

)
= D

(
ϕ

1

)
= d

(
ϕ

1

)
+

(
ω̃ ϕ̃

0 0

)(
ϕ

1

)
=

(
dϕ+ ω̃ϕ+ ϕ̃

0

)
.

Therefore, the reduction map ϕ determines a tensor 1-form for each form ϕ̃
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θ̃ = ϕ̃+ dϕ+ ω̃ϕ. (5.11)

Indeed, under the change of the cross-section

ϕ̃′ = Aϕ̃− db− (Aω̃A−1 +AdA−1)b,

ω̃′ = Aω̃A−1 +AdA−1,

ϕ′ = −L′−1z′ = Aϕ+ b,

from which we find

θ̃′ = ϕ̃′ + dϕ′ + ω̃′ϕ′ = Aϕ̃− db− (Aω̃A−1 +AdA−1)b

+ d(Aϕ+ b) + (Aω̃A−1 +AdA−1)(Aϕ+ b) = Aθ̃. (5.12)

The converse is also true. Indeed, given a local linear connection 1-form ω
and a tensor form ϕ1 with the transformation law ϕ′1 = Aϕ1, A ∈ GL(4, R),
this pair uniquely determines the generalized affine connection in M4:

Ωσ =

(
ω ϕ1 − dϕ− ωϕ

0 0

)
. (5.13)

Obtained in local coordinates, these conclusions are valid also in the bundle
(without introducing the cross-sections). Namely, there is a one-to-one corre-
spondence between the set of generalized affine connections and the set of pairs
(linear connection + tensor 1-form) [3].

Recall now that another important structure –the canonical form θ– is intro-
duced in L(M) independently of the linear connection ω. In accordance with
(5.13), the pair (ω, θ) determines a special case of the generalized affine connec-

tion Ω, which is then called the affine connection. However, the tensor form θ̃
defined by the generalized affine connection using (5.11) does not coincide with
the canonical form. Moreover, the set of generalized affine connections may be
divided into two essentially different classes. The first class are connections Ω
that define non-degenerate tensor 1-forms θ̃, for which θ̃(X) = 0 means that
the vector X is vertical, i.e., tangent to a fiber in L(M). The second class en-

compasses the connections Ω that define degenerate θ̃. In the local coordinates
θ̃ = θ̃aµEadx

µ, and the degeneracy means that det θ̃aµ = 0. One can show that θ̃
of the first class is a soldering form for the bundle of tangent affine spaces.

The affine tangent bundle E(M,A4, GA(4, R), A(M)) is associated with the
principal bundle A(M) of affine frames. The typical fibre in it is the affine space
F = R4 = GA(4, R)/GL(4, R) with the dimension 4 = dimM , and this is a
weakly reductive homogeneous space, since G = ga(4, R), H = gl(4, R), V = R4

and [H, V ] ⊆ V, [V, V ] ⊆ H). The soldering is performed by the choice of
a vector field of the “origin” of tangent affine spaces. The fact that the non-
degenerate 1-form θ̃ is a soldering form, is almost trivial. Indeed, if X ∈ TL(M)

is vertical, dπ(X) = 0, then θ̃(X) = Dϕ(X) = dϕ(hX) ≡ 0; the converse is

true due to the non-degeneracy of θ̃. The second property is also fulfilled:

R∗h

(
0 θ̃

0 0

)
=

(
0 A−1θ̃

0 0

)
=

(
A−1 0

0 1

)(
0 θ̃

0 0

)(
A 0

0 1

)
,
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with

h =

(
A 0

0 1

)
∈ GL(4, R).

The vector field ϕa(x) = −L−1a
b(x)zb(x) defines the origin of tangent affine

spaces for the chosen cross-section σ:

M −→ A(M), u = u(x).

5.3. Spontaneous symmetry breaking
and non-linear realizations

Now we consider the general formalism of nonlinear group realizations as the
most appropriate method of description of the spontaneous symmetry breaking.

At the core the method of nonlinear realizations is the notion of auxiliary
fields which are identified with the Goldstone fields [115]. The latter appear in
a physical system when the initial symmetry group G of Lagrangian of the the-
ory is spontaneously broken to some subgroup H ⊂ G, with respect to which the
physical vacuum is invariant. In this case, the ground state becomes degenerate,
and the “manifold of vacua” is isomorphic to homogeneous factor space G/H.
The parameters of G/H corresponding to the generators of the broken symme-
try can be identified with the Goldstone fields which are considered as vector
fields over M with the values in G/H. From the geometrical point of view, the
Goldstone fields are thus the cross-sections of the vector bundle with the fiber
G/H that is associated with some principal bundle P (M,G). This refers to the
local or the gauge symmetries of a physical system. According to the reduction
theorem [3], the existence of a cross-section of an associated (G/H)-bundle is
necessary and sufficient for the reduction of the principal P (M,G) bundle to the
subbundle P̃ (M,H). Therefore, in the geometrical approach to the theory of
gauge fields, one can speak of a spontaneous symmetry breaking G→ H, when
there is a reduction of the corresponding principal bundles. Here we consider
this geometrical picture, that should be distinguished from the spontaneous
symmetry breaking in the sense of a non-invariance of the quantum vacuum
state, since the “vacuum” and everything else in this theory are the purely
classical (geometrical) notions.

A nonlinear realization of the group G in the theory with the broken G→ H
symmetry is constructed from the linear realization, and the key link in this
construction are the Goldstone or auxiliary fields. Let the matter field Ψ(x)
be described as a cross-section of a vector bundle E(M,V m, G, P ) associated
with the principal bundle P (M,G), where the fiber V m is the vector space of
a representation ρ of the group G in GL(m,R).

The field Ψ is transformed with respect to the linear (irreducible) represen-
tation ρ of the group G:

Ψ −→ ρ(g)Ψ, g ∈ G. (5.14)
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The connection in the principal bundle P (M,G) introduces the parallel trans-
port in E. Accordingly, choosing some cross-section, the covariant derivative of
the field Ψ is defined, which has the following form in the local coordinates:

DΨ = dΨ + ρ′(ω)Ψ, (5.15)

where ω is a G-valued connection 1-form, and ρ′ is an appropriate representation
of the Lie algebra G.

When the symmetry G is spontaneously broken to the group H, there is a
reduction P (M,G) → P̃ (M,H), and hence there exists a cross-section of an
associated G/H-bundle – the Goldstone field:

ξ(x) ∈ G/H. (5.16)

Using the auxiliary fields (introducing the “origin” in the fibers of an associ-
ated bundle), one can construct the nonlinear realization of the group G. For
this purpose, we consider nonlinear fields defined by

ΨH(x) ≡ ρ(ξ−1(x))Ψ(x). (5.17)

We see that a nonlinear realization G is defined, if under the action of elements
of the group g ∈ G, the pair (ξ,ΨH) is transformed according to

ξ −→
g

ξ′, (5.18a)

ΨH −→
g

ρ(h′)ΨH , (5.18b)

where ξ′ ∈ G/H, h′ ∈ H, and ξ′ = ξ′(g, ξ), h′ = h′(g, ξ) are the nonlinear
functions of their arguments that are uniquely determined from

gξ = g′ = ξ′h′, (5.19)

since any element of the group G is uniquely represented as a product of the
element from the factor space G/H times an element of the subgroup H. It
is obvious that under the action of the subgroup, the representation (5.18) is
linear. Indeed, let g = h ∈ H, then ξ−→

h
ξ′ = Adhξ = hξh−1, ΨH −→

h
ρ(h)ΨH .

The notion of a nonlinear gauge field is the crucial one in the theory with
the spontaneously broken gauge symmetry. The nonlinear gauge field defines
the covariant derivative of ΨH and it is constructed on the basis of the linear
representation (5.14), (5.15) with the help of the transition formula (5.17). Let
ω be the original G-valued connection 1-form on M . Under the change of the
cross-section, it transforms as

ω −→ ω′ = gωg−1 + gdg−1, g(x) ∈ G.

In the method of nonlinear realizations, we define a nonlinear gauge field as

A = ξ−1ωξ + ξ−1dξ, (5.20)



5.3. Spontaneous symmetry breaking and non-linear realizations 99

where ξ(x) is an auxiliary field (5.16). Under the action of g, the connection A
is transformed nonlinearly,

A−→
g
A′ = h′Ah′−1 + h′dh′−1, (5.21)

where h′ = h′(ξ, g) is determined from (5.19). Therefore,

DAΨH = dΨH + ρ′(A)ΨH

is called the covariant derivative of ΨH in the nonlinear realization of G.
Usually, the homogeneous space G/H is weakly reductive. The Lie algebra

of the gauge group G can be decomposed into the sum G = H ⊕ V , where H
is the Lie algebra of the subgroup H, [116]. Let us consider the corresponding
decomposition A = Γ + B of the nonlinear gauge field A into the H-valued
1-form Γ and the V -valued form of B. From the definition (5.20), the following
transformation law under the action of g ∈ G is obvious:

Γ −→ Γ′ = h′Γh′−1 + h′dh′−1, (5.22)

B −→ B′ = h′Bh′−1. (5.23)

We thus find that Γ transforms as the usual connection (associated with the
connection in reduced principal bundle P̄ (M,H)), although with the nonlin-
early realized h′ = h′(ξ, g) ∈ H. However, the V -component of the nonlinear
connection B transforms homogeneously. Taking this fact into account, one can
treat the method of nonlinear realizations as an alternative to the Higgs mecha-
nism, since due to the homogeneous law (5.23), the nonlinear gauge field allows
for a non-zero mass term in the Lagrangian.

In conclusion, let us consider the important example of a nonlinear realiza-
tion that clearly demonstrates the above-mentioned method: the spontaneous
symmetry breaking in the Higgs mechanism.

Take the Lagrangian for the multiplet of scalar (Higgs) fields ϕ,

L = − 1

2
gµν(Dµϕ)(Dνϕ) + V (ϕ), (5.24)

where Dµϕ = ∂µϕ+ ρ′(ωµ)ϕ. This Lagrangian is invariant with respect to the
linear gauge transformations, ϕ → ρ(g)ϕ, of the group G 3 g. When the sym-
metry is spontaneously broken G→ H, we proceed to the nonlinear realization
according to (5.17) by defining the Goldstone fields ξ(x). We introduce the
nonlinear matter field ϕH = ρ(ξ−1)ϕ, in terms of which (5.24) is recast into

L = − 1

2
gµν(DA

µϕH)(DA
ν ϕH) + V (ϕH). (5.25)

In view of the spontaneous symmetry breaking, the vacuum average value
η = 〈ϕH〉 = const 6= 0, and we make the usual shift to the physical fields
χ = ϕH −η. Furthermore, we have DAϕ = DΓχ+ρ′(B)η, since by assumption,
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the “vacuum” is invariant with respect to the subgroup H ⊂ G, therefore its
generators annihilate η, whereas the Higgs field itself transforms as a nonlinear
multiplet χ→

g
ρ(h′)χ under the action of G. Hence, the Lagrangian (5.25) man-

ifests the Higgs phenomena in the nonlinear realization: the Goldstone degrees
of freedom ξ were absorbed, so that the nonlinear field Bµ became massive:

gµν(DA
µϕH)(DA

ν ϕH) = gµν(DΓ
µχ)(DΓ

νχ) + 2ρ′(Bµ)ηDµχ+ η2BµBµ.

The total Lagrangian (5.25) is still invariant with respect to the group G,
which is now realized nonlinearly, and this symmetry is “hidden”. The remaining
symmetry with respect to the subgroup H is explicit and realized linearly.

5.4. Kinematics of the gauge gravity theory

The kinematics of the gauge theory is usually understood as the identification of
the basic symmetry group and the description of the corresponding dynamical
variables – the gauge fields, as well as the investigation of their connection with
the geometrical structure of spacetime, and the related issues.

Nonlinear gauge theory of Poincaré group

The problem of a choice of the basic symmetry group in the gauge gravity
theory is not purely theoretical, and it can be ultimately settled by experiment
only. In a similar way, when constructing the unified theories of strong, weak
and electromagnetic interactions, one can discuss only to a limited extent such
questions as the number of quarks, the basic group SU(N), N =?, etc; all this
belongs to the field of experiment, so at best, one can specify only some minimal
model that consistently describes the experimental data available at the current
technological level.

The Poincaré group is important in the relativistic particle theory, and one
can assume that this spacetime symmetry is directly relevant to the formation
of the geometrical spacetime structure. Thus, the minimal model of the gauge
gravity theory should be most probably based on the Poincaré group.

We construct the gauge theory of the Poincaré group P10 similarly to the
gauge theories of internal symmetries as a theory of connection in a corre-
sponding principal bundle. However, the specific feature of the gravity theory
(namely, the relation between the gauge transformations and the symmetries of
spacetime) calls forth the attempts to explain the spacetime geometry directly
in terms of the gauge fields. This means that, in contrast to the theories of
internal symmetries, where the spacetime exists as an external background un-
related to the gauge fields, in gravity theory the geometrical spacetime structure
(metric and connection, see Chapter 1) is fully determined by the corresponding
gauge theory potentials. Accordingly, the principal bundle cannot be arbitrary
in this case, but should be constructed as a natural spacetime object.
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As the principal P10-bundle of the gauge theory of Poincaré group, we con-
sider the bundle of affine orthonormal frames O(M) as a natural subbundle of
the bundle of affine frames A(M). The gauge potential is then obtained as a
restriction of the generalized affine connection to O(M).

The central issue is to explain how the gauge gravity field (namely, the P10-
connection) determines the geometrical structure of M4, i.e., the metric and
connection on the tangent bundle TM . One conclusion looks fairly obvious: the
rotational (corresponding to the Lorentz subgroup L6) part ω̃ of the generalized
affine connection Ω, recall (5.10), may be identified with the Lorentz connection
(when the cross-section σ : M → O(M) is chosen): Γba ≡ ω̃ba P

10

.

The situation is more complex with the translational part ϕ̃ (corresponding
to the subgroup of translations T4 = R4) of Ω in (5.10). It is clear that the
1-form ϕ̃ cannot be identified with any tensor object like the tetrad or the
metric field, as one could expect, taking into account that one of the sources
of the gravitational field –the energy-momentum tensor– is obviously related
to translations. However, we have shown that the reduction of A(M) to the
bundle of linear frames L(M), defined by the 0-form ϕ (5.9), uniquely maps

ϕ̃ into the tensor 1-form of θ̃ (5.11). Accordingly, we can try to explain the

spacetime metric structure in terms of the field θ̃.
The analysis of the generalized affine connection (see Sec. 5.2.), demonstrates

that the gauge P10-theory is essentially wider than its usual interpretation as a
dynamical theory of the tetrad haµ and the Lorentz connection Γabµ fields. In-
deed, the P10-theory of the second class, see Sec. 5.2., does not define the metric
structure on M4 at all, since in this case the form θ̃ is degenerate (det θ̃aµ = 0)
and cannot be identified with the 1-form of coframe. More exactly, we can say
that in this case the spacetime has the ultralocal degenerate Carroll geometry
[117], where the metric is degenerate, det gµν = 0, everywhere in M4. As it is
shown in [118], such a state could be realized in the singularity, and within
the perturbation theory developed in [118, 119] this corresponds to the zero
metric signature with σ = 0 in (2.94), and (7.51). Physically, such region is
characterized by distances much smaller than the Planck length l0 = 10−35 m.

In contrast to this unusual situation, the gauge P10-theory of the first class
introduces the metric on TM in a consistent way. However, in this case the
resulting structure is much wider than the Riemann-Cartan structure. Indeed,
we have shown in Sec. 5.2. that the 1-form θ̃ is the generalized soldering form
of the affine tangent bundle, but it does not coincide with the canonical form θ
(the coframe 1-form θ = h), as it was noticed in [103]. The difference of θ̃ from

θ is in arbitrary general linear transformation θ̃a = Labθ
b, L ∈ GL(4, R).

With an account of the explicit covariance with respect to the local Lorentz
transformations (we consider the principal bundle of orthonormal frames), it
reduces to the difference on the Goldstone transformation from the factor space
GL(4, R)/SO(3, 1). One can use this arbitrariness in the definition of tetrads
to construct the conformal gravity theory of new type in the Riemann-Cartan
spacetime, as we discussed in Sec. 4.1., see [69].
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In the rest of the section, we present the rigorous foundation for these con-
clusions in the framework of the nonlinear realization of the gauge P10-theory.

Construction of the nonlinear gauge theory of the Poincaré group consists
(schematically) of the two stages. The first one is formulated [99]-[105] as the
soldering procedure, when the bundle of affine frames is reduced to the bundle
of linear frames. In physical terms, this means the spontaneous breaking of the
translational symmetry, which reflects the fact that the physical matter fields
depend only on the points of the base M4, but not on the points of the fiber
[99, 100]. The (implicit) second stage is very important: the principal P10-bundle
of the gauge gravity theory is itself a subbundle in A(M), in other words, it is
obtained as the corresponding restriction or reduction of the structural group
G(4, R) → P10. In accordance with this, we notice that an arbitrary element
g ∈ GA(4, R) is uniquely represented in the 5× 5 matrix disguise as

g =

(
A b

0 1

)
=

(
1 ξ

0 1

)(
u 0

0 1

)
h, where h =

(
L 0

0 1

)
.

Here, the first factor is the Goldstone translational field – the element from
GA(4, R)/GL(4, R), and the second factor u ∈ GL(4, R)/SO(3, 1) is the Gold-
stone field responsible for the reduction of A(M) to AO(M); finally, the matrix
h ∈ SO(3, 1) represents the exact (unbroken) Lorentz symmetry.

Now we proceed from the linear gauge field Ω, the generalized affine connec-
tion given in (5.10), to the nonlinear gauge field via (5.20) with the help of the
auxiliary fields (

1 ξ

0 1

)(
u 0

0 1

)
=

(
u ξ

0 1

)
.

A straightforward computation yields

A =

(
u ξ

0 1

)−1(
ω̃ ϕ̃

0 0

)(
u ξ

0 1

)
+

(
u ξ

0 1

)−1

d

(
u ξ

0 1

)

=

(
u−1ω̃u+ u−1du u−1(ϕ̃+ dξ + ω̃ξ)

0 0

)
.

As a result, we finally find that the rotational part of the gauge gravitational
field Γ := u−1ωu+ u−1du is realized linearly with respect to the Lorentz group
L6 and defines the local Lorentz connection on M4, whereas the tetrad field
(the canonical form or the 1-form of coframe) θ := u−1θ̃ = u−1(ϕ̃+ dξ + ω̃ξ) is
interpreted as the nonlinear gauge field with an additional contribution of the
Goldstone fields u ∈ GL(4, R)/SO(3, 1), transforming homogeneously under
the action of translations.

In this way, the Riemann-Cartan (see Chapter 1) geometry U4 naturally arises
on the spacetime manifold M4, where the metric (tetrads) and the connection
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are expressed in terms of the basic dynamical variables of the gauge P10-theory
of gravity – the generalized affine connection Ω, or the equivalent set of the
nonlinear gauge fields Γ and θ and the Goldstone variables u, ξ.

Nonlinear gauge theory of de Sitter group

The Poincaré group P10 is not semi-simple. In Chapter 6, we will demonstrate
that this fact has the far-reaching consequences when constructing the dynamics
of the gauge gravity theory, and actually yields unsatisfactory results. In an
effort to improve the situation, we now consider the gauge gravity theory for
the nearest semi-simple extension of P10 – the de Sitter group S10, which reduces
to the Poincaré group via the Wigner-Inonu “contraction”.

Technically, it will be more convenient to work in a vector bundle, and not
in the principal one, although one should remember that the gauge field is
originally defined as a connection in the principal bundle, and then it uniquely
introduces the connection in the associated bundle, which for this reason is also
called the gauge field.

De Sitter group S10 = SO(1, 4) is defined as a group of motion of the de Sitter
space Σ4 which is a 4-dimensional pseudo-Riemannian space of constant nega-
tive curvature. The latter is usually represented as a hypersurface in R1,4, the
5-dimensional pseudo-Euclidean space with the metric ηAB = diag(−1, 1, 1, 1, 1)
(the indices A,B,C,D . . .= 0, 1, 2, 3, 4 label 5-dimensional components). The de
Sitter space is defined by the equation

ηABx
AxB = `2, (5.26)

where
{
xA
}

are the global Cartesian coordinates in R1,4, and ` > 0 is the
curvature radius of the de Sitter space. The equivalent form of (5.26) reads

ηabx
axb + (x4)2 = `2,

in terms of the 4-dimensional Minkowski metric ηab = diag(−1, 1, 1, 1); the
lower case indices a, b, c, · · · = 0, 1, 2, 3.

The group SO(1, 4) is ten-parametric, and its generators MAB = −MBA

satisfy commutation relations

[MAB ,MCD] = ηADMBC − ηBDMAC − ηACMBD + ηBCMAD. (5.27)

It is convenient to decompose the generators MAB into two groups: Jab = Mab

and Pa = `−1M4a. Then we rewrite (5.27) as

[Jab, Jcd] = ηadJbc − ηbdJac − ηacJbd + ηbcJad,

[Pa, Pb] = − 1

`2
Jab, [Pa, Jbc] = ηabPc − ηacPb,

 (5.28)

which shows that the Lie algebra G = so(1, 4) is decomposed into the sum
G = H ⊕ V , where H is the subalgebra formed by six generators Jab = −Jba,
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isomorphic to the algebra so(1, 3) of the Lorentz group; V is the 4-dimensional
vector space spanned by Pa.

The de Sitter space Σ4 is homogeneous, since SO(1, 4) acts transitively on

Σ4. Denoting 0 = {xa = 0, a = 0, 1, 2, 3}, we choose the point

(
0

l

)
∈ Σ4 as the

center, its stabilizer is the Lorentz group SO(1, 3) = L6 formed by the 5 × 5

matrices SAB =

(
Lab 0

0 1

)
, with Lab ∈ SO(1, 3). Accordingly, Σ4 = S10/L6.

From (5.28) we see that this is the weakly reductive space, since [H, V ] ⊂ V .
Let E(M,R1,4, S10, P ) be a vector bundle associated with the principal bun-

dle P (M,S10). The action of the structural group S10 in E we realize by the
5× 5 matrices with the following parametrization distinguishing the subgroup
L6 (we omit the indices to make the formulas more compact):

S = STSL, S ∈ SO(1, 4). (5.29)

Here SL =

(
L 0

0 1

)
, L ∈ SO(1, 3) describes the purely Lorentz rotations, and

ST is the matrix of the de Sitter boost mapping the vector

(
0

l

)
∈ Σ4 into

an arbitrary point of the de Sitter space V A =

(
V a

V 4

)
∈ Σ4, with V A = `tA,

ηABV
AV B = `2. Explicitly:

ST =

(
δab − tatb(1 + t4)−1 ta

− tb t4

)
. (5.30)

The finite rotation ST can be obtained from the infinitesimal one by the expo-

nential map (ST )AB = exp

(
0 χa

−χb 0

)
, where χa (with χb = ηabχ

a) are the

four transformation parameters which determine tA in (5.30) by the formulas

ta = (sinχ)χ−1χa, t4 = cosχ, χ2 = ηabχ
aχb.

The linear gauge field for the de Sitter group is identified with the connection
in E. As an element of the Lie algebra of the de Sitter group SO(1, 4), the
connection 1-form has the following structure:

ΩAB =

(
ω̃ab θ̃a

− θ̃b 0

)
, ω̃ab = −ω̃ba, θ̃b = ηabθ̃

a. (5.31)
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However, this decomposition is invariant only with respect to the Lorentz group,
whereas under the action of the full S10 transformations (5.29), the fields ω̃ and

θ̃ are mixed. Therefore, one cannot identify ω̃ with the connection in the tangent
bundle, and θ̃ with the fundamental form. To obtain the geometrical structure
on the base M4, it is necessary to take into account that the S10-theory is not
an “internal” one, and to perform a soldering of the bundle to the spacetime
manifold. For this purpose, as we observed from the example of the Poincaré
group above, we have to choose the cross-section of the (G/H)-bundle, i.e., the
Goldstone field, and proceed to the nonlinear realization of the group G. In
this case, G = SO(1, 4), H = SO(1, 3), G/H = Σ4 and the Goldstone field

is actually the 5-vector tA =

(
ta

t4

)
, instead of which however we will (more

rigorously) consider the de Sitter boost (5.30).
Following the general framework of Sec. 5.3., we construct the nonlinear gauge

field using ξ = ST :

A = ξ−1Ωξ + ξ−1dξ =

(
Γab θa

−θb 0

)
, (5.32)

where θb = ηabθ
a, and we find explicitly

Γab = ω̃ab +
taDtb − tbDta

1 + t4
, (5.33)

θa = t4θ̃a + Dta − ta(dt4 − θ̃btb)
1 + t4

. (5.34)

Here we denoted Dta = dta + ω̃abt
b.

Under the action of the de Sitter group S10, which is now realized nonlinearly,
the gauge fields are transformed as

Γ′ab = L′acΓ
c
dL
′−1d

b + L′acdL
′−1c

b, θ′a = L′abθ
b,

where S′L =

(
L′ab 0

0 1

)
, and the nonlinear function L′ = L′(tA, S) is deter-

mined from Sξ = SST = S′TS
′
L.

Thus, we can finally identify the 1-form Γab with the local Lorentz connection,
and the 1-form θa with the canonical form. As a result, the Riemann-Cartan
geometry naturally arises on M4. Note that, in general, the field θa depends
on the additional Goldstone variables, corresponding to the embedding of the
de Sitter group S10 into the general linear group GL(5, R), similarly to the
P10-theory. However, we will not distinguish them explicitly, since we are more
interested in the specific features of the S10-theory, which are important for the
construction of the consistent dynamical scheme.
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Conclusions: the general scheme of the gauge gravity theory

Let us summarize the essential points of the gauge approach to the gravity
theory, distinguishing it from the theory of internal symmetries.

1. The spacetime M4 is not considered as a fixed background. The determi-
nation of its geometrical structure is a main issue of the gauge-theoretic scheme.

2. The gauge field (potential) in the gravity theory is the connection in the
principal bundle P (M,G).

3. The principal bundle of the gauge gravity theory is not abstract, but is
realized as a certain structure on M4. For the P10-theory, this is the bundle of
affine frames A(M).

4. The specific realization of bundles in the gauge gravity theory implies
their soldering to the base. There exists a cross-section of the (G/H)-bundle
and the soldering 1-form is defined by the translational part of the connection
in P (M,G).

5. The soldering establishes a homomorphism of the P (M,G) bundle struc-
ture onto the tangent bundle TM , thereby introducing the geometrical structure
on the spacetime M4, with the metric and connection defined in terms of the
gauge gravity field.

6. The explicit construction of the geometrical spacetime structure is per-
formed in terms of the connection in P (M,G) in the nonlinear realization of
the gauge group. The Goldstone fields, arising in the reduction G → H (the
latter being closely related to the soldering), also contribute to the metric and
the linear connection in TM .

It is worthwhile to note that the group of general coordinate transforma-
tions is not related directly to the construction of the gauge gravity theory.
However, the gauge transformations of special form may induce the infinitesi-
mal transformations of coordinates on M4, if we introduce the latter with the
help of the reduction map ϕ defined in (5.9). Indeed, using the cross-section
σ : M → A(M), we can define the local coordinates xµ as x = ϕ ◦ σ. Then

under the action of translations T =

(
1 −a

0 1

)
, the cross-section σ → R∗Tσ,

and we obtain xµ → xµ+aµ(x) as the local general coordinate transformations.
Within the framework described above, the Riemann structure of GR cannot

be obtained without additional restrictions of the natural geometrical structure
arising on the spacetime. Such restrictions (for example, a priori putting the tor-
sion equal zero) contradict the consistent gauge-theoretic scheme, and they do
not follow from any (even non-gauge-theoretic) fundamental physical principles.
In this relation, it is instructive to recall Einstein’s words, that “...the question
whether this continuum has a Euclidean, Riemannian, or any other structure
is a question of physics proper which must be answered by experience, and not
a question of a convention to be chosen on grounds of mere expediency.” [39].



6
Gauge gravity models with dynamical
(Γ-S)-interaction

6.1. Principles for construction of dynamics

In the previous Chapter, we saw that the gauge approach based on the Poincaré
group P10 = T4 ⊃× L6 in general yields a non-Einstein theory of gravity. One can
choose the tetrad field haµ and the local Lorentz connection Γabµ field on M4 as
the main dynamical variables of the P10-theory. In accordance with the general
gauge scheme, their source is the P10-current consisting of the canonical energy-
momentum tensor tµa and the canonical spin tensor Sµab, which correspond to
subgroups T4 and L6, respectively. As compared to GR, the new feature of
the P10-theory is the existence of an additional (Γabµ-Sµba)-interaction, along
with Einstein’s (haµ-tµa)-interaction. Since the Poincaré group is not simple,
these interactions are characterized by the two different coupling constants –
one with the dimension [ l20 ] = m2 for translations and the dimensionless one λ
for Lorentz rotations.

The prediction of a new type of the gravitational interaction (spin-connection)
is the main physical consequence of the gauge gravity theory for the Poincaré
group.

The realization of this interaction in the Einstein-Cartan model was reviewed
in Chapters 3 and 4. However, one cannot consider the ECT as a satisfactory
gauge gravity theory. The Lagrangian LECT ∼ R(Γ) ∼ (∂Γ + ΓΓ)hh is non-
dynamical both for Γ and for h, in the sense that the field equations do not con-
tain derivatives of the gauge field strengths, unlike the Maxwell or Yang-Mills
theories. Due to the contact nature of the (Γ-S)-interaction, one can eliminate
the torsion from the theory, thereby arriving at the effective non-renormalizable
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S2-self-interaction of matter. The degeneracy of ECT is also manifest in the
absence of the second coupling constant for the (Γ-S)-interaction, as result of
which the spin effects turn out to be negligibly small. Another sign of degener-
acy is the mismatch of the gauge kinematics and the dynamics of the model: we
have R ∼ t, Q ∼ S in ECT field equations, linking the L6 field strength (the
curvature) to the T4 current (the energy-momentum), and the T4 field strength
(the torsion) to the L6 current (the spin).

The consistent nondegenerate dynamical scheme of the gauge gravity theory
should be free of such deficiencies. However, its construction is complicated due
to the essential non-uniqueness of theory’s action, which is a consequence of
the nonlinear realization of the gauge symmetry that allows for non-polynomial
(in the nonlinear fields haµ and gµν) interactions. We can try to overcome this
difficulty by supplementing the gauge theory with a number of conditions (nat-
ural from physical and geometrical viewpoints) that help to select the basic
Lagrangian of the theory.

The appropriate general requirements can be formulated as follows:

1. Correspondence principle: in the absence of spin and torsion, the field
equations should allow for a limiting transition to GR.

2. Both gravitational interactions, (h-t) and (Γ-S), should be dynamical.
3. The dynamics of the theory should be consistent with the gauge kine-

matics in the sense that the source of the gauge field of a certain spacetime
symmetry is the corresponding Noether current.

Let us apply these criteria to analyze the possible choices of the Lagrangians
(more exactly, of the action functionals) of the gravitational theory considered
earlier in the literature. To keep the correct dimension of the action, [S] = [~],
we write down all the dimensional factors explicitly.

a) SGR = 1
2κc

∫
d4x
√
g R, SECT = 1

2κc

∫
d4x
√
g R(Γ).

These models with the Lagrangians linear in the curvature do not satisfy the
requirements 2 and 3.

b) SYM = − ~
4

∫
d4x
√
g Rabµν(Γ)Rab

µν(Γ).
The Yang-Mills Lagrangian obviously provides the fulfilment of the require-
ments 2 and 3. However, this model has two serious problems: the absence of
GR limit and the conformal invariance of SYM which imposes a strong con-
straint on matter (the vanishing of the trace of the energy-momentum tensor).
Therefore, this model can be viewed only as a microscopic limit of a fundamen-
tal theory.

c) S0 = SGR + βSYM , β = const.
This choice does not completely satisfy the requirement 3, since this model
arises in the gauge theory of the Lorentz group with the assumption that the
metric is a priori defined on the base.

d) S1 = SECT + βSYM , β = const.
Also in this model the requirement 3 is not fulfilled in the sense that the vari-
ation with respect to the tetrads yields non-dynamical equations.

e) S2 = − α
2κc

∫
d4x
√
g QaµνQa

µν + βSYM , α, β = const.
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This model does not satisfy the principle of correspondence with GR. However,
one can come up with a modification

S3 =
1

2κc

∫
d4x
√
g (−QaµνQaµν + 2QµQ

µ) + βSYM ,

that contains the Schwarzschild solution as a torsionless limiting case.
f) The model, satisfying all the requirements above, is given by the action

SP=

∫
d4x
√
g

{
1

2κc
(R(Γ)− 2αQa

µνQaµν)− 1

4λ
Rabµν(Γ)Rab

µν(Γ)

}
. (6.1)

Here α is a dimensionless coupling constant, and the dimension of [λ] = [1/~].

Below we demonstrate, how this dynamical framework naturally arises in
P10- and in S10-theory, so that one can avoid a nontrivial analysis of all possible
Lagrangians quadratic in the curvature and torsion with arbitrary coefficients.

6.2. Choice of the action in the gauge gravity theory

Difficulties of the Poincaré gauge theory

Let Ω be the 1-form of the generalized affine connection on M4 (we assume a
cross-section σ: M → O(M)), interpreted as the linear P10-gauge gravitational
field. The field strength is identified with the curvature 2-form

R = dΩ + Ω ∧ Ω =

(
R̃ Θ̃

0 0

)
,

where R̄ = d̃ω + ω̃ ∧ ω̃, Θ̃ = d̃θ + ω̃ ∧ θ̃. However, the latter is not invariant
with respect to the decomposition of the curvature into the translational and
the Lorentz parts, and to improve this we proceed to the nonlinear realization.
The nonlinear gauge field

A =

(
Γab θa

0 0

)
(6.2)

encompasses the local Lorentz connection Γab (the L6 gauge field) and the
tetrad field ha (the T4 nonlinear gauge field) is introduced by θa = 1

l0
ha, where

the factor l0 is included to get the correct dimension, [ha] = 1. The curvature
2-form

R =

(
Rab

1
l0
Q̂a

0 0

)
,

Rab = dΓab + Γac ∧ Γcb,

Q̂a = dha + Γab ∧ hb
(6.3)

consists of the Lorentz curvature 2-form Rab and the torsion 2-form Q̂a, which
are the L6 and the T4 field strengths of the P10 gauge field, respectively. Note
that Q̂a = 1

2 Q̂
a
µνdx

µ ∧ dxν with Q̂aµν = − 2Qaµν , cf. (1.3).
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One can construct the dynamics of the P10-theory by two methods:

1. We can use the irreducible parts Γ and h of the nonlinear gauge field
(6.2) to derive the covariant objects (6.3) and then to build the Lagrangian as
an arbitrary polynomial of invariants formed from the curvature, torsion and
tetrad, R,Q, h. This procedure is essentially non-unique.

2. Using the analogy with the Yang-Mills fields of the internal symmetries,
one can try to construct the Lagrangian depending on A (and R) as a whole.
In this case, the simplest choice is the Yang-Mills Lagrangian 1

2Tr(R ∧ ∗R).
The trace operation “Tr” refers to the P10-“internal” indices, and the Hodge
operator (dualization, ∗) is defined with the help of the metric gµν = haµh

b
νηab,

resulting from the nonlinear realization of the P10 group. Since the Poincaré
group is semi-simple, its Cartan-Killing metric (encoded in the trace operation
Tr) is degenerate, and as a result, the variational derivation of the field equation
does not commute with the decomposition of A and R into the L6- and T4-
irreducible parts. Indeed, if we make such decomposition at first, then

1

2
Tr(R∧ ∗R) =

1

2
Tr


(
R 1

l0
Q̂

0 0

)
∧

(
∗R 1

l0
∗ Q̂

0 0

) =
1

2
Tr(R ∧ ∗R),

hence the torsion completely drops out, and the remaining Lagrangian is de-
scribed as the case b) in Sec. 6.1.. The resulting field equations are unsatisfactory
for the macroscopic gravitation theory [100].

On the other hand, if the action 1
2λ

∫
Tr(R ∧ ∗R) + Smat is formally varied

with respect to A, we find the field equation

D ∗R ≡ d ∗ R+A ∧ ∗R− ∗R ∧A = λ ∗ J. (6.4)

Here the P10-current is obtained as a variational derivative ∗J := δSmat/δA
of the matter action with respect to A. The structure of the source reflects its
relation to the Poincaré group,

J =

(
Sab l0t

a

0 0

)
, (6.5)

where the 1-forms Sab and ta are the L6- and T4-irreducible parts of J , re-
spectively. With an account of (6.2) and (6.3), we recast (6.4) into the L6- and
T4-components:

D ∗Rab ≡ d ∗Rab + Γac ∧ ∗Rcb − ∗Rac ∧ Γcb = λ ∗ Sab, (6.6)

D ∗ Q̂a − ∗Rab ∧ hb = λl20 ∗ ta. (6.7)

Let us investigate the vacuum solutions (Sab = 0, ta = 0). We switch to the
coordinate notation in components and use the decomposition (1.12) to write
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the field equations (6.6) and (6.7) in terms of the metric and contortion tensors
(gµν , T

λ
µν) instead of the original variables (haµ, Γabµ):

Rαβ
µν(Γ);ν + TασνR

σ
β
µν(Γ)− TσβνRασµν(Γ) = 0, (6.8)

Tα[νβ]
;ν + TασνT

σ[νβ] +
1

2
Rαβ(Γ) = 0. (6.9)

Recall that the semicolon :ν denotes the Riemannian covariant derivatives de-
fined by the Christoffel symbols.

The field equations (6.6) and (6.7) is the system of differential second or-
der equations for the tetrad and the local Lorentz connection. Therefore, both
(h-t) and (Γ-S)-interactions are dynamical in this model. Decomposing the
curvature tensor into the Riemannian (depending only on the metric) part and
the post-Riemannian (torsion-dependent) part, we find the system (6.8) and
(6.9) of differential equations of the second order for the metric and contortion
(gµν , T

λ
µν).

When the torsion equal to zero, Tαµν = 0, the vacuum system (6.8) and (6.9)
reduces to the Einstein equation Rαβ = 0. But in general case, the torsion is
propagating, and thus the (Γ-S)-interaction has a non-zero effective radius, in
contrast to ECT.

The physical interpretation of the sources in the right-hand sides of the field
equations (6.6) and (6.7) is a difficult issue. This primarily refers to (6.7), since
the variational derivation of the equation (6.6), corresponding to L6-subgroup,
does not depend on the order of separation of translations in P10. Accordingly,
the source Sabµ can be consistently identified with the canonical spin density
tensor of matter [99, 100]. However, tαµ in (6.5) cannot be identified with the
energy-momentum tensor, since when deriving the system (6.4), the dependence
of the metric gµν (in the Hodge operator ∗) on the translational field θ was
not taken into account (recall that the formal variation of the gravitational
and matter actions was performed only with respect to the gauge field A as a
whole).

Therefore, although the second method of construction of the P10-theory
dynamics allows to highlight some important features typical for the gauge
gravity theory (such as the correspondence with GR, the dynamical nature of all
interactions, and the partial consistency of the dynamics with the kinematics),
it does not lead to the physically satisfactory results. This is related to the fact
that the Poincaré group P10 is not non-semisimple.

Thus, we have to turn to the first method to construct the dynamics of
the P10-theory. However, in this case, there are too many arbitrary coupling
constants in the theory. For their concretization and for the fixation of the
structure of the gravitational Lagrangian, we now analyse the construction of
the gauge theory dynamics for de Sitter group S10 – the nearest semisimple
extension of P10.
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Dynamics of S10-theory of gravity

In the discussion of kinematics of the gauge gravity theory in Sec. 5.4., we
identified the gauge potential for de Sitter group theory with the nonlinear
connection (5.32):

A =

(
Γab

1
l0
ha

− 1
l0
hb 0

)
.

The corresponding gauge field strength is identified with the curvature 2-form

R = dA+A ∧A =

(
Rab − 1

l20
πab

1
l0
Q̂a

− 1
l0
Q̂b 0

)
, (6.10)

where πab = ha ∧ hb = 1
2π

a
bµνdx

µ ∧ dxν . Obviously, πabµν = haµhνb − haνhµb.
Since the de Sitter group is semisimple, its Cartan-Killing form is non-degen-

erate, and one can choose the action of the theory in the standard Yang-Mills
form

SdS =
1

4λ

∫
d4x
√
gTr(R∧ ∗R).

With an account of (6.10), we have

SdS =

∫
d4x
√
g

{
1

2κc
[R(Γ)− 2Λ− 2QaµνQa

µν ]− 1

8λ
RabµνRab

µν

}
, (6.11)

where we redefined the coupling constants as κc = l20λ, Λ = 3
l20

.

The action (6.11) is invariant with respect to the nonlinear realization of the
de Sitter group S10. Its structure coincides, up to a λ-term, with that of SP
(6.1) with α=1. Therefore, the non-degeneracy of the Cartan-Killing form for
S10 makes it possible to construct the gauge theory dynamics that satisfies the
requirements 1-3 formulated in Sec. 6.1..

From the action (6.11), the equations of the gravitational field are derived
with the help of variation with respect to the local Lorentz connection Γabµ and
the tetrad haµ. In vacuum (in the absence of matter) they read

− 1

2λ
DνRabµν(Γ)− 1

κc

(
Qµab + hµaQb − h

µ
bQa + 2Q[ab]

µ
)

= 0, (6.12)

1

κc

(
2DνQaµν −Rµa(Γ) +

1

2
hµaR(Γ)− Λhµa

)
+

1

c
τµa = 0, (6.13)

where modified covariant derivative Dµ is defined using Γabµ for the Lorentz
(tetrad) indices and using

{
λ
µν

}
for the world (coordinate) indices (µ, ν, . . . ).

The tensor τa
µ in (6.13) reads

τµa =
c

2λ

(
Rbcaν(Γ)Rbc

µν(Γ)− 1

4
hµaR

bc
αβ(Γ)Rbc

αβ(Γ)

)
+

4

κ

(
QbaνQ

bµν − 1

4
hµaQ

b
αβQb

αβ

)
. (6.14)
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This is the energy-momentum tensor of S10-gauge field, that takes into account
the influence on the spacetime geometry of the gravitational field itself. The
field equation (6.13) differs from (6.7) by the term τa

µ, making the physical
meaning of the nonlinear S10-theory more clear. One can check that

κ(Dµτµa + 2Qbaµτ
µ
b) = −

( l20
2
DνRcdµν + 2Qcd

ν
)
Rcdaµ

− 4QbaµDνQbµν +RbaµνQb
µν .

The interaction with matter is introduced in accordance with the minimal
coupling principle (as a result of the gauge approach) by means of a substitution
∂µ → hµaDµ. This amounts to supplementing the action SdS by the interaction
term

Sint = −
∫

Tr(A ∧ ∗J) =

∫
d4x
√
gLint,

Lint = −ΓabµS
µb
a +

1

c
tµah

a
µ, J =

(
Sab

l0
2c t

a

− l0
2c tb 0

)
.

 (6.15)

Variation of total action SdS + Sint with respect to Γab and ha gives

DνRabµν(Γ) +
2

l20

(
Qµab + hµaQb − h

µ
bQa + 2Q[ab]

µ
)

= 2λSµab, (6.16)

− 2DνQaµν +Rµa(Γ)− 1

2
hµaR(Γ) + Λhµa = κ (tµa + τµa) . (6.17)

This is the final system of the field equations of the S10-gauge gravity theory.
In terms of the metric and contortion, the equations (6.16), (6.17) read

l20
2

{
Rαβ

µν(Γ);ν + TλανRβλ
µν(Γ) + TλβνRλα

µν(Γ)
}

+ 3gµνT[αβν] + δµ[αT β] = κcSµαβ , (6.18)

Rµν − 1
2gµνR+ gµνΛ− T(µ;ν) + gµνT

λ
;λ + TλT

λ
(µν)

− 3
2T[αβµ]T

αβ
ν − 3

2T[αβν]T
αβ

µ + 1
2gµν(TλT

λ + 3T[λαβ]T
λαβ)

− l20
2

{
Rαβµλ(Γ)Rαβν

λ(Γ)− 1
4gµνR

αβ
ρσ(Γ)Rαβ

ρσ(Γ)
}

= κt(µν), (6.19)

3T[µνλ]
;λ − T[µ;ν] + TλT

λ
[µν] + 3T[αµν]Tβ

µν − 3T[βµν]Tα
µν = κt[µν]. (6.20)

Taking the covariant derivatives of the field equations (6.16) and (6.17), after
some algebra we find

t[ab] = cDµSµab, (6.21)

Dµtµa + 2Qbaµt
µ
b + cSµcdR

cd
µa = 0. (6.22)

These are the conservation laws of the total angular momentum and the energy-
momentum of matter, which coincide with (1.47) and (1.45) when we notice that
DµSµab = (∇µ − 2Qµ)Sµab and Dµtµa = (∇µ − 2Qµ)tµa.
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When the matter is spinless and the matter Lagrangian does not depend on
the tetrad otherwise than in terms of the metric, (6.22) reduces to the ordinary
Einstein’s conservation law of the energy-momentum tensor.

6.3. Physical consequences of the gauge gravity theory

The study of the S10-theory generalizing the gauge approach based on the
Poincaré group, allows one to fix the structure of gravitational field action via
(6.10) and (6.11).

Now we investigate the physical content of the gauge gravity theory with the
dynamical (Γ-S)-interaction described by the system (6.16) and (6.17). It is
worthwhile to note that these field equations represent a particular case of the
general gauge gravity model with the action Sg =

∫
d4x
√
gLg, where the La-

grangian Lg = Lg(ha, Qa, Rab) is an arbitrary scalar function of the tetrad (the
metric), and the gravitational field strengths – the curvature and the torsion.
The general field equations read

DνHab
µν − Eabµ = Sµab,

DνHa
µν − Eaµ =

1

c
tµa.

Here the Lorentz and the translational gauge momenta are defined by

Ha
b
µν := 2

∂Lg
∂Rbaµν

, Ha
µν :=

∂Lg
∂Qaµν

,

and the gravitational energy-momentum and spin are introduced as

Ea
µ := hµaLg − 2QbaνHb

µν −RcbaνHb
c
µν , Eab

µ := H[ab]
µ.

Correspondence with GR

Let us investigate the issue of the correspondence of the vacuum field equations
(6.18)-(6.20) and the Einstein field equations under the assumption of vanishing
torsion. For the sake of generality, we do not confine ourselves to the de Sitter
gravity with the action (6.17), but study the most general Lagrangian without
the parity-violating terms that leads to the second-order equations for the gauge
gravitational fields (haµ, Γabµ):

Lg =
1

2κc
{a0R(Γ)− 2Λ + a1QαµνQ

αµν + a2QαµνQ
µαν + a2QαQ

α}

+ b1Rαβµν(Γ)Rαβµν(Γ) + b2Rαβµν(Γ)Rµναβ(Γ) + b3Rαβµν(Γ)Rαµβν(Γ)

+ b4Rαβ(Γ)Rαβ(Γ) + b5Rαβ(Γ)Rβα(Γ) + b6R
2(Γ). (6.23)

We have the 4 dimensionless coupling constants a0, a1, a2, a3, and the 6 coupling
constants b1, . . . , b6 with the dimension [~], in addition to the cosmological term
Λ. When a0 = 0, we have the purely quadratic model.
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Not all terms in the Lagrangian (6.23) are independent, since the expression

√
g
{
Rαβµν(Γ)Rµναβ(Γ)− 4Rαβ(Γ)Rβα(Γ) +R2(Γ)

}
is the complete divergence representing the Gauss-Bonnet identity. The integral
of this scalar density describes the topological invariant. Therefore, any of the
constants b2, b5, b6 may be eliminated. However, here this possibility is not
used.

Let us analyse the field equations for the Lagrangian (6.23) for the case of
the vanishing torsion, Qλµν = 0. Then we find Ha

µν = 0, hence Eab
µ = 0, and

in vacuum (Sµab = 0 and tµa = 0) the field equations reduce to

DνHab
µν = −hαah

β
b

(
ϕ1Cαβ

µν
;ν + ϕ2 δ

µ
[αR;β]

)
= 0,

−Eµa =
1

κc

(
a0R

µ
a −

a0

2
Rhµa + Λhµa

)
+ ϕ1Caν

µb↗Rνb + ϕ2R↗Rµa = 0.

Here Cαβ
µν is the Weyl tensor introduced in the irreducible decomposition of

the curvature tensor (1.14), and ↗Rµν = Rµν − 1
4gµνR is the traceless part of

the Ricci tensor. It is worthwhile to mention that the Weyl tensor is double-
self-dual, as a result, it satisfies the quadratic identity

Cασ
µνCβσµν =

1

4
δβαCρσ

µνCρσµν ,

which was taken into account in the derivation of the field equations.
The form of the dynamical equations essentially depends on the parameters

ϕ1 and ϕ2 that are constructed from the coupling constants:

ϕ1 = 2(4λ1 + λ2), ϕ2 =
4

3
(λ1 + λ2 + 3λ3),

λ1 = b1 + b2 +
1

2
b3, λ2 = b4 + b5, λ3 = b6.

The last line determines the structure of the effective Lagrangian obtained from
(6.23) for the vanishing torsion, Qλµν = 0:

Lg =
1

2κc
(a0R− 2Λ) + λ1RαβµνR

αβµν + λ2RαβR
αβ + λ3R

2.

When ϕ1 = 0 and ϕ2 = 0, the field equations reduce to Einstein’s equation
with the cosmological term. This happens when λ1 = λ3 and λ2 = −4λ3 which
corresponds to the Gauss-Bonnet topological action.

The resulting system for all values of ϕ1 and ϕ2 yields a0R = 4Λ (to check
this, contract the second equation). Consequently, the torsionless (Qλµν = 0)
vacuum field equations for the whole class of models (6.23) read

a0R = 4Λ, (6.24a)

ϕ1Cαµβν↗Rαβ +
(
a0
κc + ϕ2R

)
↗Rµν = 0, (6.24b)

ϕ1↗Rµ[α;β] = 0. (6.24c)
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The last equation follows from the Bianchi identity (1.17).
It is obvious that the vacuum Einstein spaces (with λ-term)

a0R = 4Λ, Rµν =
1

4
gµνR, (6.25)

are solutions of the system (6.24a)-(6.24c). The question is: are there other
solutions or (6.25) represents the unique solution? This is a non-trivial problem
[137, 187]. Let us analyse the case of a nonvanishing a0 6= 0 first; we then can
put a0 = 1 without the loss of generality. There are several situations depending
on the values of ϕ1 and ϕ2.

1. When ϕ1 = 0, the system (6.24a)-(6.24c) reduces to

R = 4Λ,
( 1

κc
+ 4ϕ2Λ

)
↗Rµν = 0. (6.26)

Then we have one of the two possibilities.
1.1. If 1

κc + 4ϕ2Λ 6= 0, the system (6.26) coincides with Einstein’s field
equations (6.25).

1.2. In the special case 1
κc+4ϕ2Λ = 0, equations (6.24b), (6.24c) are satisfied

identically, and the solutions are arbitrary spaces subject to the only constraint
R = 4Λ.

2. If ϕ1 6= 0, we introduce

ξ :=
1
κc + 4ϕ2Λ

ϕ1
,

and the system (6.24a)-(6.24c) is then recast into

R = 4Λ, (6.27a)

Cαµβν↗Rαβ = − ξ↗Rµν , (6.27b)

↗Rµ[α;β] = 0. (6.27c)

One can prove [193] that the only solutions of the system (6.27a)-(6.27c)
are Einstein spaces (6.25), unless ξ = 0, or ξ = 2Λ

3 , or ξ = − 4Λ
3 . In these

exceptional cases, the solutions of the system (6.27a)-(6.27c) are known with
↗Rµν 6= 0 which are not Einstein spaces [189].

For completeness, let us mention that similar conclusions can be derived for
the purely quadratic model with a0 = 0 in which case ξ = ϕ2R/ϕ1.

The S10-theory with the action (6.11) belongs to the class of quadratic models
(6.23). As one can immediately check, ξ = Λ

3 in this de Sitter model, and hence
it does not belong to the exceptional cases above. Accordingly, we conclude that
the only torsionless solutions of the de Sitter theory (6.11) are Einstein spaces
(6.25), thus demonstrating the correspondence of the S10-theory with GR.

Let us estimate the coupling constants λ and l0 for the (Γ-S)-interaction.
Using the torsionless solutions (6.25) (Einstein spaces), one can try to identify
Λ directly with the cosmological term of GR. According to the modern obser-
vations, Λ ≈ 10−52 m−2, consequently we find l0 ≈ 1026 m, which is of order of



6.3. Physical consequences of the gauge gravity theory 117

a typical size of the de Sitter world. As a result, assuming that κ is the usual
Einstein’s gravitational constant, we obtain for the coupling constant of the
(Γ-S)-interaction an estimate 1/λ ≈ 10120~. Thus, we can conclude that the
spin of matter under ordinary physical conditions practically does not affect
the gravitational field, and with the high accuracy we can treat (6.16) as the
vacuum field equation with the zero right-hand side. However, in this case, the
last term in (6.11) quadratic in the curvature would dominate at macroscopic
distances, which obviously contradicts the idea to identify Λ with the cosmo-
logical term. Consequently, such identification and the resulting estimate of the
coupling constants are not consistent with observations.

One should expect the coupling constant λ to be much larger (with the up-
per limit for λ to be fixed by experiment), so that the curvature quadratic
term dominates only at small distances, whereas at the macroscopic scales it
is essentially smaller than the term (R + Q2). Then the resulting huge value
of Λ does not allow to interpret it as a cosmological term. The correspondence
with Einstein’s equations was derived here in the absence of matter, which is a
special physical situation. When tµν 6= 0, the condition of the vanishing torsion
turns out to be too strong even in the absence of spin Sλµν = 0, and it does
not lead to reasonable results, in general [100, 129, 140, 141].

Instanton solutions

The Yang-Mills structure of the action (6.10) of the de Sitter theory underlies
the existence of the self-dual or the instanton solutions. To analyse this impor-
tant feature, we turn to the Euclidean formulation of the theory. Technically
this is done via the replacements SO(1, 4) → SO(5), SO(1, 3) → SO(4), and
ηab → δab; one achieves this by the Wick rotation of the time coordinate into
the purely imaginary domain t → itE. The self-duality conditions for the de
Sitter curvature (6.10) read

R = ∗R, (6.28)

and this is written explicitly as the system(
Rab −

1

l20
πab

)
= ∗

(
Rab −

1

l20
πab

)
, (6.29)

Q̂a = ∗ Q̂a. (6.30)

On the self-dual configurations (6.29), (6.30), the vacuum field equations
(6.12) and (6.13) are satisfied due to generalized Ricci (1.15) and Bianchi (1.17)
identities which can be conveniently recast into

2D[λQ
a
µν] = −Rab[µνhbλ], D[λR

ab
µν] = 0.

The solutions of (6.29), (6.30) are called gravitational instantons. The Euclidean
action

S =
1

8λ

∫ {(
Rab − 1

l20
πab
)
∧ ∗
(
Rab −

1

l20
πab

)
+

2

l20
Q̂a ∧ ∗Q̂a

}
, (6.31)
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reaches a local extremum (minimum) on the instanton configurations, when it
becomes proportional to the topological invariant

−
∫

Tr(R∧R) =

∫ {
Rab ∧Rab +

2

l20

(
Q̂a ∧ ∗Q̂a −Rab ∧ πab

)}
.

The first term (with an appropriate numeric coefficient) is equal to the Pontrya-
gin index, whereas the second term describes the Nieh-Yan topological invariant.

In the theory under consideration, the Euclidean action is well defined (unlike
the Euclidean action in GR and ECT), leading to the formally convergent path
integral in the quantum theory.

The absolute minimum of (6.31) is realized on the Euclidean de Sitter space

R = 0
{
Qaµν = 0, Rabµν =

2

l20
h[a
µ h

b]
ν

}
, (6.32)

on which the action vanishes, S = 0.
It is worthwhile to note that using the ansatz Rαβµν = 2

l20
δα[µgν]β when solv-

ing the complete system of the vacuum field equations (6.18)-(6.20) automati-
cally yields the zero torsion. This result agrees with the original assumptions:
in the S10-theory, the simplest solution is the de Sitter space of the constant
curvature, but not the Minkowski flat space.

One can straightforwardly describe the torsionless instantons. When Q = 0,
the contraction of the equations (6.29) gives (due to the Ricci identity) the
Einstein equations with the λ-term. Thus, in the theory under consideration,
the Einstein spaces constitute the subset of the instanton solutions, and it is
quite natural to interpret the solutions of Einstein’s equations as gravitational
instantons in this approach.

Let us consider in detail the important special case: the spherical SO(4)-
symmetric instanton solutions of (6.29) and (6.30). The general spherically
symmetric (in the four-dimensional SO(4) sense) ansatz for the local Lorentz
connection and the tetrad reads as follows:

Γabµ = A(xaδbµ − xbδaµ) +Bεabµνx
ν , (6.33)

haµ = fδaµ + gxaxµ, (6.34)

where A = A(ρ), B = B(ρ), f = f(ρ), g = g(ρ), are the scalar functions of
ρ = xaxa = δabx

axb.
Substituting (6.33), (6.34) to (6.29), we obtain the system

2ρA′f + 2Af ∓
(

2B − 2ABρ+
f2

l20

)
(f + ρg) = 0, (6.35)

2(A±B)′f − 2(A±B)g + (A±B)2(f + ρg) = 0. (6.36)

Here the dash denotes derivatives with respect to ρ, and the upper signs corre-
spond to the self-duality (R − l0−2π) = ∗(R − l0−2π), whereas the lower signs
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refer to the anti-self-duality (R − l0−2π) = − ∗ (R − l0−2π). In a similar way,
for the torsion we derive from (6.30) one more equation

2f ′ − g + (A± 2B)(f + ρg) = 0. (6.37)

The spherical SO(4)-symmetric ansatz (6.33) and (6.34) excludes the trace-
less part of the torsion. However, the trace and pseudotrace are non-trivial:

Qµ = − 3

2f
xµ {2f ′ − g +A(f + ρg)} , Q̌µ = − 3

2f
xµB(f + ρg),

and the self-duality equation (6.37) establishes their relation (it is obvious that
for such configuration the trace Qµ is proportional to the pseudotrace Q̌µ).
This implies the first result: any self-dual SO(4)-symmetric solution (6.33),
(6.34) describes the Riemannian spacetime (there is no torsion), if either B = 0
or f + gρ = 0.

All Riemannian SO(4)-instantons may be described explicitly.
When f + gρ = 0, we obtain a degenerate geometry. Indeed, then g = − f/ρ

and thus the tetrad haµ = f(δaµ − xaxµ/ρ) is a projector with the vanishing
determinant. The same applies to the corresponding Euclidean spacetime metric
gµν = f2(δµν − xµxν/ρ) which represents an unphysical geometry.

When B = 0, there exists an infinite family of the SO(4)-symmetric solutions
of the system (6.35)-(6.37):

(Aρ− 1)
2

= 1∓ f2ρ

l20
, g(1−Aρ) = 2f ′ +Af.

We can express A and g in terms of an arbitrary function f , provided Aρ 6= 1.
For the self-dual case, we have an exceptional solution A = 1/ρ, f = l0/

√
ρ with

an arbitrary g. This is a singular solution, but the infinite family encompasses
the regular configurations, as well. The famous de Sitter instanton is recovered
from the family above by fixing g = 0:

A =
2

ρ± ρ0
, f =

2l0
√
ρ0

ρ± ρ0
, g = 0, B = 0.

As usual, the upper (lower) sign refers to the self-duality (anti-self-duality). For
the positive real integration constant ρ0, the self-dual solution is everywhere
regular, but the anti-self-dual solution diverges at the radius ρ = ρ0.

The search for the non-Riemannian (Qaµν 6= 0) SO(4)-instantons represents a
nontrivial task. There is no their complete description yet, and specific solutions
are difficult to interpret. A preliminary analysis can be found in [194].

Possible existence of the instanton configurations is consistent with the idea of
Hanson and Regge [145] who noticed the analogy of the gravity with Q 6= 0 and
the superconductivity theory. The vanishing torsion is then dynamically realized
as a phase of the Meissner type effect, and the local regions with nontrivial
torsion Q 6= 0 are the analogs of Abrikosov’s vortices.
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Torsion dynamics and universal spin-spin interaction

Let us consider the physically most important particular type of matter – the
fermion fields (describing quarks, leptons, hadrons) as a source of the gauge
gravitational field. Then the tensor of spin is totally antisymmetric and has the
following form:

Sλµν = ελµνκŠ
κ, Šµ =

i~
4

Ψγµγ5Ψ.

Substitution of the ansatz Rab = 1
l20
πab into the field equations of the de

Sitter model (6.18)-(6.20) yields the Riemannian de Sitter space in the absence
of matter, but for the nontrivial fermion sources this ansatz gives rise to the
algebraic relation between the torsion and the spin Ťµ = κc

3 Šµ via (6.18), with
the “translational” equation (6.19) reducing to the Einstein equation with the
λ-term and the symmetrical part of the canonical energy-momentum tensor on
the right-hand side.

Let us qualitatively investigate the dynamics of the torsion field in the de
Sitter gauge gravity theory. For this purpose, we consider a simplified model: we
assume the metric to be flat gµν = ηµν , h

a
µ = δaµ, and the torsion is represented

only by the pseudotrace vector Ťµ, which is natural if the sources are fermions.
Then the action describing the torsion dynamics takes the following form:

SŤ=

∫
d4x
√
g

{
1

λ

[
∂µŤν∂

µŤ ν +
1

2
(∂µŤ

µ)2 + µ2ŤµŤ
µ − 3

2
(ŤµŤ

µ)2
]

+ ŠµŤ
µ

}
,

(6.38)
where µ2 = 9λ/κc = 9/l0

2.
We can use the method of Gupta [195] to calculate the static non-relativistic

interaction potential between the two fermions with spins σ1 and σ2 exchanging
by the Ť -quanta. In the linear approximation we obtain

VŤ (r) = − λc~2

8π

{
(σ1 ·σ2)

e−µr

r
− 1

µ2
(σ1 ·∇)(σ2 ·∇)

(e−µr
r
− e−

√
2
3µr

r

)}
.

In the limit of the zero transferred momentum in Ť -propagators (µ 6= 0), one
finds the contact potential like in the ECT. Therefore, the presence of the
Yang-Mills (quadratic in the curvature) term in (6.11) modifies ECT in the
same way as the theory of intermediate bosons modifies the Fermi theory of
weak interactions.

Qualitatively the same result for the interaction potential arises also for the
most general quadratic gauge gravity model (6.23), where one needs to replace
the parameters λ, µ2 and 2/3 with the appropriate algebraic expressions con-
structed from the coupling constants a1, . . . , a3 and b1, . . . , b6, see the details in
[196, 197, 198].

The spin-spin potential is also found [146] in GR for the fermions interacting
via the graviton exchange, where VG ∼ κc2~2(σ1 ·σ2)/r3 (analog of the Breit
potential). In contrast to VG, the dynamical gauge (Γ-S)-interaction predicts
the 1/r spin-spin interaction (similar to Coulomb’s and Newton’s potentials).
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6.4. Model description of microscopic gravitational
interactions

We now turn to the study of the microscopic limit of the gauge gravity theory.
Addressing this problem one can relax the requirements formulated in Sec. 6.1.
for the construction of the dynamics, in particular it makes no sense to talk
about the correspondence with GR at small distances. Moreover, in accordance
with the gauge principles in the framework of the geometrodynamical approach
(following Einstein’s idea that the spacetime geometry is not fixed ad hoc, but
is determined by the interaction and the motion of matter), one can assume
that at small scales we may need to consider new microscopic physical prop-
erties of matter, which did not manifest themselves at the macroscopic level.
Understanding the geometrization program in a general sense, the new physics
should lead to the new geometry. Accordingly, the minimal model based on the
Poincaré group (or its extension to the de Sitter group) may turn out to be too
narrow in the area of the high energies (very small distances).

Most probably, the P10-theory provides a good description for the gravita-
tional interactions of leptons, since their spacetime symmetries are exhausted
by the Poincaré group. However, there are additional symmetries in the physics
of strongly interacting particles [147] besides the P10. In particular, the system-
atics of hadrons within the Regge approach [148] suggests the description of all
particles lying on a Regge trajectory as excitations of one physical object. Such
states are classified by the unitary representations of SL(3, R) group, or in rel-
ativistic theory by SL(4, R). In addition, in the high energy strong interactions
one observes another (asymptotic) regularity – the Bjorken scaling [149] as a
manifestation of the dilational symmetry [140]. Together, the dilations and the
SL(4, R) constitute the general linear group and, adding the translations, we
end up with the general affine group GA(4, R) = GL(4, R) ⊃× T4.

Therefore, one can suggest that the gravitational interactions of the hadrons
should be described not by the P10-theory, but rather by a more general theory
based on GA(4, R). The corresponding gauge theory is called a metric-affine
gravity; for its comprehensive overview see [199].

In Secs. 5.3. and 5.4., we constructed the kinematics of the gauge theory
for the general affine group. The gauge potential is identified with the gener-
alized affine connection in the principal bundle of affine frames A(M), which
introduces the most general geometrical structure on the spacetime manifold
M4: the independent linear connection Γαβµ and the metric gµν (the tetrad
fields haµ). The sources of such a microscopic gravitational field are the corre-
sponding Noether GA(4, R)-currents of matter: the energy-momentum and the
“hypermomentum” [147, 199]

Jµab =
∂Lm
∂∂µΦ

IabΦ. (6.39)
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Here Lm is the Lagrangian of the matter fields Φ, and Iab are the generators
of GL(4, R). The irreducible parts of the hypermomentum (6.39) are the spin
Sµab = Jµ[ab], the dilation current Jµ = Jµabη

ab, and the “proper hypermo-

mentum” J
µ
ab = Jµ(ab) − 1

4J
µηab, corresponding to shear deformations of the

frame.

Microscopic gravitation as a Yang-Mills field

Now we consider the microscopic gravitation model (Γabµ, haµ) assuming that
the linear connection Γabµ is the most general one. The dynamics of the theory
at small distances can be formally obtained by discarding the “translational”
low-energy terms in the basic Lagrangian (6.11) or taking a formal limit l0 →
∞. Thus, we will describe the model microscopic theory of the gravitational
interactions by the Lagrangian of the Yang-Mills type for the GL(4, R)-gauge
field

LYM =
1

8λ
Rabµν(Γ)Rba

µν(Γ). (6.40)

The invariance group of the theory (6.40) is very wide. It includes the confor-
mal Weyl group gµν → g′µν = e2σ(x)gµν (see Sec. 4.2.); the local linear GL(4, R)-

group haµ → h′aµ = Labh
b
µ, Γabµ → Γa

′
b′µ = La

′
aΓabµL

−1b
b′ +La

′

c ∂µL
−1c

b′ with
L ∈ GL(4, R) and the group of general coordinate transformations: for example,
haµ → haµ′ = ∂xµ

∂xµ′
haµ.

The field equations are derived by the variation of (6.40) with respect to the
independent Γabµ and gµν . In vacuum, they read

DµRabµν(Γ) ≡ 1
√
g
∂µ
{√

gRabαβ(Γ)gαµgβν
}

+ gαµgβν {ΓacµRcbαβ(Γ)− ΓcbµR
a
cαβ(Γ)} = 0, (6.41)

τµν = − c

2λ

{
Rabµλ(Γ)Rbaν

λ(Γ)− 1

4
gµνR

a
bαβ(Γ)Rba

αβ(Γ)
}

= 0. (6.42)

Compare the last equation with (6.14).
Technically, the equation (6.42) means that the energy-momentum tensor of

the Yang-Mills field vanishes, which therefore is often called a ghost field.
It is convenient to introduce the conformally invariant tensor density πµναβ =

=
√
g
(
gµαgνβ − gναgµβ

)
. The metric enters the theory only in terms of πµναβ ,

in particular, the action reads SYM = 1
16λ

∫
d4xπµναβRabµν(Γ)Rbaαβ(Γ) and

the field equation (6.41) can be rewritten as

∂µ
{
Rabαβ(Γ)πµναβ

}
+ {ΓacµRcbαβ(Γ)− ΓcbµR

a
cαβ(Γ)}πµναβ = 0. (6.43)

The importance of the Yang-Mills fields motivates the interest in the ex-
act solutions of the classical gauge field equations. It is known [150, 151] that
any spherically symmetric solution of the Yang-Mills equations for the internal
groups [SU(2) etc.] in the Minkowski space has the “Coulomb” type behaviour.
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Let us study the spherically symmetric solutions of (6.43) in the Riemannian
space-time with a given background metric gµν(xλ). In the local spherical coor-
dinates (x0 = t, x1 = r, x2 = θ, x3 = ϕ) for an arbitrary spherically symmetric
metric ds2 = −ξ(r, t)dt2 + η(r, t)dr2 + r2dθ2 + r2 sin2 θdϕ2, the most important
component of the density πµναβ reads as follows:

π1010(t, r, θ, ϕ) = f(r, t)χ(θ, ϕ), (6.44)

where ξ, η, f, χ are the functions of the specified arguments. Under the condition
of the spherical symmetry, we assume that Γab0(r, t) depends on the time and
the radial coordinates, whereas Γab1 = Γab2 = Γab3 = 0. Then one can check
that the solution of (6.43) reads

Γab0(r, t) = Aab

r∫
r0

dr′

f(r′, t)
, Rab10 = Γa ′b0 =

∂Γab0
∂r

, (6.45)

where the constant matrix A ∈ GL(4, R). In [152], it is proved that this is a
general (up to a gauge transformation) spherically symmetric solution of the
equations (6.43).

In addition, when the matrix A is such that AabA
b
a = 0, eq. (6.45) describes

the exact solutions of the complete system of the microscopic gravitation (6.41)
and (6.42), since then τµν = 0 identically. Such matrices do exist in GL(4, R).

To illustrate (6.45), we consider several special background metrics.
1. Let f(r, t) = −r2. This is true for the Schwarzschild, the Reissner-

Nordström, the de Sitter, the Kottler metrics (the spherical vacuum solution
of Einstein’s equations with the cosmological term), the conformally flat met-
rics (in particular, for the Friedman metric) and for some others. In this case,
Rab10 = −Aab/r2, and Γab0 = Aab(1/r − /r0). The solution thus has the
“Coulomb” form, generalizing the result of [150] to the aforementioned Rie-
mannian spaces.

2. Let us consider the cosmological metrics

ds2 = − dt2 + a2(t)

{
dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

}
, k = const.

Then f(r, t) = −a(t)r2
√

1− kr2 and

Γab0(r, t) =
Aab
a(t)

(√1− kr2

r
− const

)
, Rab10 = − Aab

a(t)r2
√

1− kr2
.

For particular cases, we have:
a) k = 1/r2

0 is a closed universe, with a(t) = 1 this is the static Einstein’s
world. The gravitational field strength Rab10(r, t) has singularities at r = 0 and
at r = r0, at the boundary or the world. The region r > r0 is unphysical. Thus,
in the Einstein world, the spherically symmetric solutions of the Yang-Mills
equations have a non-Coulomb short-range behaviour.
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b) k = − 1/r2
0 is an open universe, a(t) = 1. The solution is asymptotically

Coulomb one.
c) k = 0, a(t) = eHt, (H = const) is the inflationary cosmological de Sitter

metric in the Lemaitre-Robertson form [120]. In this case

Rab10(r, t) = − Aab
r2

e−Ht, Γab0(r, t) = Aab(1/r − 1/r0)e−Ht.

A local observer interprets this solution as a Coulomb type configuration with
a decreasing gauge charge (compare this with Dirac’s hypothesis [68] about the
change of constants in time).

Introducing the interaction of the microscopic gravity with matter, the field
equations are modified by the relevant sources: the hypermomentum (6.39) is
added in the right-hand side of (6.41) and the energy-momentum tensor tµν in
(6.42). The conformal symmetry of the model (6.40) give rise to the restriction
tµµ = 0 that allows only the massless matter fields as the sources of the (Γ, g)-
gravity. Examples of such fields are the massless spinor fields and the Yang-Mills
fields in the theories of “grand unification” (before a spontaneous symmetry
breaking), which underlines the essentially microscopic nature of model under
consideration.

Below, we investigate the question how this microscopic picture is related to
the macroscopic theory of gravity.

Spontaneous breaking of conformal symmetry
and macroscopic limit

The structure of the microscopic gravity theory does not formally allow for
the interaction with the macroscopic, massive matter. Therefore, in order to
preserve the conformal invariance of a massive field action, we introduce an
auxiliary scalar field ϕ(xλ) which transforms under the action of the Weyl
group as

ϕ −→ ϕ′ = e−σ(x) ϕ(x).

If we now define the masses of a vector Aµ and a spinor Ψ fields as m = ϕ
◦
m,

with
◦
m = const, one can add the corresponding mass term to the complete

matter Lagrangian.
It is important to determine the Lagrangian of the dynamical field ϕ to set

the transition to the macroscopic theory. There are two possibilities, which are
based on the different interpretation of the Weyl symmetry that we analyzed
in Sec. 4.2.. Let us consider both cases.

a) Canonical Weyl approach and correspondence with GR

The usual interpretation of Weyl’s transformations gµν → e2σgµν is based
on the expansion of lengths, and in particular, on the scaling of the interval
ds→ ds′ = eσds. If we understand the conformal symmetry of the microscopic
gravity theory in this sense, the most general Weyl-invariant action for the
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scalar field ϕ has the form:

Sϕ =

∫
d4x
√
g ~
{

1

2
∂µϕ∂

µϕ+
R

12
ϕ2 − Λ0ϕ

4

}
, Λ0 = const.

We assume that the scalar field has the canonical dimension of an inverse length,
whereas Λ0 is dimensionless. Fixing the Weyl freedom by the gauge condition
ϕ = ϕ0 = const [73, 149] (which corresponds to spontaneous breaking of con-
formal symmetry) one finds the complete action of the theory

S=

∫
d4x
√
g
{
LYM (Γ) +

1

c
Lm(Ψ, A) +

1

2κc
(R− 2Λ)

− 1

2
ϕ2

0

◦
m2
AAµA

µ + ϕ0
◦
mΨΨΨ

}
. (6.46)

Here Lm(Ψ, A) is the free Lagrangian of the massless vector Aµ and spinor Ψ
fields, and κc = 6/(~ϕ2

0), Λ = 6Λ0ϕ
2
0.

On the macroscopic scales � 1/ϕ0, we have 1
2κcR � LYM (Γ), i.e., the

Hilbert-Einstein term is dominating. Consequently, the macroscopic limit in
this case is described by GR with the cosmological term.

This procedure, that introduces the masses and the Lagrangian R, is the
classical analog of the quantum mechanism of the dynamical breaking of the
conformal symmetry, and the field ϕ plays the role of the Goldstone boson [153].

Assuming that the coupling self-interaction constant of the scalar field is
small (Λ0 → 0), one can ignore the Λ-term in (6.46), and hence the gravitational
Lagrangian has the form L0 = 1

2κcR + 1
8λR

a
bµν(Γ)Rba

µν(Γ), described as the
case (c) in Sec. 6.1.. The corresponding field equations read:

Rµν −
1

2
gµνR = κ (tµν + τµν) , (6.47)

DνRabµν(Γ) = 2λJµab. (6.48)

The exact spherically symmetric solution of the vacuum equations (6.47),
(6.48) (for the similar solutions for an arbitrary gauge group see in [99, 100, 152])
is straightforwardly derived:

ds2=− eνdt2 + e−νdr2 + r2dθ2 + r2 sin2 θdϕ2,

eν = 1− 2Gm

c2r
+
κcq2

4λr2

for the metric, and for the gauge field Γabµ:

Rab01 =
uab
r2

, Rab23 = vab sin θ,

where q2 = −uabuba−vabvba and the dimensionless constant matrices uab, v
a
b ∈

GL(4, R). This solution is of the Reissner-Nordström type. The essential dif-
ference is that the value of the “effective charge” q2 may be greater, equal or
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smaller than zero, in view of the non-compactness of the group GL(4, R). For-
mally, q2 is composed of the three irreducible parts, since u and v are connected
with the spin, the dilation current and the proper hypermomentum of the cen-
tral body: uab = 1

4ηabu + u[ab] + uab, u
a
a = 0. The case q2 = 0 belongs to the

class of the abovementioned ghost solutions of the Yang-Mills equations.
The non-compactness of the symmetry group may have some specific conse-

quences in the gauge gravity theory. For example, the indefiniteness of the sign
of q2 may prevent the formation of a horizon, as well as singularities may be
avoided in cosmology. This is related to the fact that the sign of the energy
τ00 of the field Γ is indefinite, which leads to the violation of the energy con-
ditions of the Penrose-Hawking theorems. Indeed, denoting Eabi = Rab0i and
Babij = Rabij (Latin indices from the middle of the alphabet i, j, k, · · · = 1, 2, 3
label 3-space components), we can decompose the curvature into the four pieces

e

E ki = E0k
i,

e

B kji = Ekji,
m

E kij = B0k
ij ,

m

B klij = Bklij .

Then using the self-evident symbolic notation we find

τ00 =
c

2λ

( e
B 2 +

m

B 2 −
e

E 2 −
m

E 2
)
,

that clearly demonstrates that the energy density is not positive definite.
This can be observed as an “antigravity” effect, or a gravitational repulsion,

that would be manifest as an effective reduction of mass. One can qualitatively
illustrate this as follows. Suppose the matter source in (6.47), (6.48) is a massive
cylinder made of a ferromagnetic material that can be magnetized along its axis
z. The dilation current and the proper hypermomentum are both equal zero and
the model thus reduces to an effective T4×L6-theory. Under the assumption of
an approximately flat metric gµν ≈ ηµν , the polarized state of a homogeneous

sample can be modeled by the spinor field Ψ =
√
n eimt

1
0

1
0

 , so that the spin

pseudovector is Šµ =
{

0, 0, 0,− ~
2n
}

, where n is the particle density of the
polarized spins. In the linear approximation, neglecting the boundary effects,
we then find the internal solution of the equation (6.48) for the components
of the curvature: Rab

0i = 2
3λx

i S0
ab, Rab

ik = λ
(
xiSkab − xkSiab

)
. This yields

τ00 = −λc~2n2(5r2 + 9z2)/36, and we obtain the correction to the energy
caused by the Γ-field by evaluating the integral over the cylinder source:

∆E =

∫
d3x τ00 = − λc~2n2

36
V

(
5ρ2

0

2
+

14`20
3

)
< 0,

where sample’s geometry is specified by the radius ρ0, the length `0, and the
volume V = πρ2

0`0. To make a numeric estimate, let us take ρ0 ∼ 10−2

m, `0 ∼ 10−1 m, and n = 1029 m−3. Then we conclude, that upon an in-
stantaneous magnetization of the sample, its mass should effectively reduce
by ∆M = ∆E/c2 ≈ −λ~ × 10−8 kg, or the relative reduction should be
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∆M/M ≈ −λ~ × 10−7. This is a tiny effect for the value λ~ = 10−120 of
the coupling constant estimate obtained in Sec. 6.3.. The current qualitative
analysis shows that the gauge gravity coupling constant can be significantly
larger, and even λ~ ∼ 1 is a viable estimate. The actual value of λ should be
fixed by future experiments.

b) Internal conformal symmetry and model GA(4, R)-theory

In another approach, which was developed earlier in Sec. 4.2., the Weyl trans-
formations are interpreted as the tetrad scaling haµ → eσhaµ. In this case, the
most general conformally invariant action for the auxilliary scalar field ϕ has the
form S̃ϕ =

∫
d4x
√
g ~{R(Γ)ϕ2−Λ0ϕ

2} (the kinetic term for ϕ is not added since
it violates the conformal invariance). Then, fixing the gauge ϕ = ϕ0 = const as
a result of the spontaneous symmetry breaking, one introduces masses for the
matter fields and finds the effective gravitational Lagrangian, which now has
the following form (it was described as the case (d) in Sec. 6.1.):

L1 =
1

2κc
R(Γ) +

1

8λ
Rabµν(Γ)Rba

µν(Γ). (6.49)

Thereby, we obtain the model gauge theory for the general affine group in-
vestigated in [18]. The peculiar feature of this (gµν ,Γ

a
bµ)-theory is the presence

of an additional Abelian long-distance field in it – the Weyl vector Kµ. Using
the irreducible decomposition of GL(4, R)-connection Γab = Γabµdx

µ 1-form

Γab = Γ̂ab − 1

2
Kab

into the local Lorentz connection Γ̂ab = Γ[ab] and the nonmetricity1 1-form
Kab := Dηab = −2Γ(ab), we find the relevant decomposition of GL(4, R)-

curvature Rab = 1
2R

a
bµν(Γ)dxµ ∧ dxν 2-form

Rab = R̂ab +
1

4
Ka

c ∧Kc
b −

1

2
D̂Ka

b +
1

4
δabΩ (6.50)

into the local Lorentz curvature 2-form R̂ab = dΓ̂ab + Γ̂ac ∧ Γ̂cb and the homo-
thetic curvature2 2-form Ω = − 1

2dK = − 1
2∂[µKν]dx

µ ∧ dxν . Here we denoted

K = Ka
a = Kµdx

µ, and the traceless 1-form Ka
b = Ka

b − 1
4δ
a
bK. It is easy

to show that the vector field Kµ decouples from the other fields and interacts
with matter and with the metric similarly to the electromagnetic field. Further-
more, the homothetic curvature plays the role of the “Maxwell tensor”. Indeed,
substituting (6.50) into (6.49) we recast the Yang-Mills part of the Lagrangian

1Note that Kab = Kµabdx
µ where Kµab = hαah

β
b∇µgαβ , cf. the definition of the tensor of

nonmetricity (1.7). Furthermore, 2Γ(ab) = Dηab = −ηacηbdDηcd.
2Ω = 1

2
Ωµνdxµ ∧ dxν , see (1.2) and (1.10) for the definition of the homothetic curvature

tensor.
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into

Rab ∧ ∗Rba =
1

4
Ω ∧ ∗Ω +

1

4
D̂Ka

b ∧ ∗D̂Kb
a

+

(
R̂ab +

1

4
Ka

c ∧Kc
b

)
∧ ∗
(
R̂ba +

1

4
Kb

d ∧Kd
a

)
,

while the curvature scalar R(Γ), depends only on the first term from the right-
hand side of (6.50), not containing Kµ. The matter source of the quasi-Maxwell
Weyl field is identified with the dilation current Jµ which is the trace part of
the hypermomentum (6.39). The latter is conserved due to the invariance of the
L1 Lagrangian (6.49) with respect to Einstein’s λ-transformations [70].

The remaining irreducible non-Riemannian parts of GL(4, R)-connection Γ
have the short-range behaviour due to the effective mass arising for them from
the Hilbert-Einstein term in (6.49). One can show that in the weak field approx-
imation for the Lagrangian (6.49), the translational field haµ has the standard
Einstein dynamics, thus providing the correspondence with GR.



7
Quantization of gravity

7.1. Methods of quantum gravity

Construction of the quantum theory of a physical system starts with the conver-
sion of its degrees of freedom into operators on which the canonical commutation
relations are then imposed. Obviously this should be preceded by the construc-
tion of the canonical formalism which was analyzed at the classical level in the
previous chapters. The results of this analysis, caused by the special features
of the canonical formalism in the curved spacetime and the degeneracy of the
gravitational action, reveal a number of new features of the quantum theory.

A basic feature of gravity theory is that it is degenerate in virtue of its gauge
invariance under local diffeomorphisms, so that we need a method of quantiza-
tion of degenerate systems. As was shown in Chapter 2, the degenerate theory
described by the canonical action (2.27) with the first-class constraints (2.28) af-
ter choosing the canonical gauges (2.32) reduces to the effective non-degenerate
system with the action (2.40) in terms of independent physical degrees of free-
dom Φ∗ = (q∗, p∗) satisfying (2.39). The quantization of this theory means that
q∗ and p∗ become operators in the Hilbert space of states and are subject to
canonical commutation relations[

Φ̂∗, Φ̂∗′
]

= i~ {Φ∗, Φ∗′ }∗ , (7.1)

where { , }∗ are the Poisson brackets calculated for the set of the physical
phase variables Φ∗. In what follows we consider the Planck constant ~ to be
one in universal units, but later will reinstate it explicitly when considering the
semiclassical expansion in powers of ~.
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The variables of the original total phase space Φ = (q, p) also become oper-
ators as the operator functions of Φ̂∗ (2.38). However, their commutation rela-
tions differ essentially from the “naive” canonical commutators defined relative
to the Poisson brackets { , } in (q, p)-space[

Φ̂, Φ̂′
]

= i {Φ (Φ∗) , Φ′ (Φ∗) }∗ 6= i {Φ,Φ′ } (7.2)

and essentially depend on a choice of a gauge in the complete set of constraints
ψa = (χµ, Hµ).

Thus, within the framework of a certain set of gauges, the quantum system
is described by the operators Φ∗, and its state is determined in the Schrödinger
picture by the vector of the space of states |Ψphys(t)〉, evolving according to the
Schrödinger equation with the physical Hamiltonian

i
∂|Ψphys(t) 〉

∂t
= Ĥphys(Φ̂

∗) |Ψphys(t) 〉. (7.3)

When applied to the gravity, this approach is a direct realization of the quan-
tization program in the ADM procedure. Solution of the constraints in any given
gauge defines the chronologically ordered family of space-like hypersurfaces and
the corresponding family of quantum states representing the quantum evolu-
tion.

However, this approach has serious disadvantages. Solution of the constraints
is in general a complicated problem, the resulting physical Hamiltonian turns
out to be non-local, and the whole method is not manifestly covariant. Moreover,
a priori there is no guarantee that such quantization performed with different
gauge conditions will give unitarily equivalent results. The first step to the
understanding how this equivalence can be attained was done in [202] within
the path integral formalism.

The time evolution operator for the Schrödinger equation (7.3) has a form of
the path integral over the physical phase space [154, 155]:

Uphys(g1, t1 | g0, t0) =

∫
D[ gA, pA] exp i

t1∫
t0

dt
(
pAġ

A −Hphys(g
A, pA)

)
,(7.4)

D[ gA, pA] =
∏
t,A

dgA(t)
∏
t′,B

dpB(t′), (7.5)

where the integration is done with respect to the Liouville measure1 and with
the boundary conditions for the phase space coordinate gA(t) at the initial t0
and final t1 moments of time

gA(t0) = gA0 , gA(t1) = gA1 . (7.6)

1Here and in what follows we will disregard trivial purely numerical factors like
∏
t(1/2π) in

the path integral measure, in the Fourier representation of relevant functional delta functions,
etc.
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One should use the relation between the phase space integration measure on
the physical subspace of gA and pA and the delta-function type measure on the
original phase space of qi and pi∏

A

dqA dpA =
∏
i

dqi dpi δ
(
χ(q, p)

)
δ
(
H(q, p)

)
J(q, p). (7.7)

Here the delta functions of gauge conditions and constraints have a support on
the subspace where they are vanishing,

δ
(
χ(q, p)

)
≡
∏
µ

δ
(
χµ(q, p)

)
, (7.8)

δ
(
H(q, p)

)
≡
∏
µ

δ
(
Hµ(q, p)

)
=

∫ (∏
µ

dNµ
)
eiN

µHµ(q,p), (7.9)

and the factor J(q, p) is the determinant of the functional matrix of the canoni-
cal Faddeev-Popov operator Jµν (q, p) given by the Poisson brackets of the set of
gauge conditions and constraints (cf. equation (2.33) or equation (3.7) for the
case of a special choice of canonical coordinates Φ = (Xµ, Πµ; gA, pA))

J(q, p) = detJµν (q, p), Jµν (q, p) = {χµ, Hν}. (7.10)

Therefore, making according to (7.7) the change of integration variables in
(7.3) from (gA, pA) to (q, p) and using the relation (2.39) we get

Uphys ∼
∫
D[ q, p ]DN δ[χ(q, p) ]J [ q, p ] exp i

t1∫
t0

dt
(
piq̇

i−H0−NµHµ

)
, (7.11)

where the linear combination of first class constraints in the exponentiated
canonical action was achieved due to the integral representation of their delta
function (7.9). Here the functional delta function δ[χ(q, p) ] and the functional
determinant J [ q, p ] obviously represent products over time moments of their
local analogues,

δ[χ(q, p) ] =
∏
t

δ
(
χ(q(t), p(t))

)
; J [ q, p ] =

∏
t

J
(
q(t), p(t)

)
, (7.12)

while the path integral measure D[ q, p ] is of course similar to that of the phys-
ical phase space (7.5),

D[ q, p ] =
∏
t,i

dgi(t)
∏
t′,k

dpk(t′), DN =
∏
t′,µ

dNµ(t′). (7.13)

The canonical path integral representation of the unitary evolution opera-
tor (7.11) allows one to perform the gauge dependence analysis, because the
variation of the gauge in this expression can be achieved by a canonical trans-
formation of integration variables [202], and thus its gauge independence can
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formally be proven. This gives a first hint on the unitary equivalence of quantiza-
tion schemes in different sets of gauge conditions. Moreover, the contribution of
the functional determinant can be represented as a functional integral over the
anticommuting (Grassman) variables – the Faddeev-Popov ghost fields Cν(t)
and Cµ(t) [203],

J [ q, p ] =

∫
DCDC exp

{
i

∫
dtCµ(t) Jµν

(
q(t), p(t)

)
Cν(t)

}
, (7.14)

so that the total action becomes local in spacetime, and the path integral be-
comes manageable by a standard technique of renormalization of ultraviolet
divergences. Integration over the canonical momenta converts it to the La-
grangian form which within the generalized set of special (relativistic) gauges
becomes manifestly covariant and admits covariant renormalization.

All these advantages of the path integral representation remain, however,
incomplete because the change of integration variables (gA, pA)→ (qi, pi) is not
consistent at the end points of the time interval [ t0, t1]. This happens in virtue
of the boundary conditions (7.6) and unequal footing of the coordinates and
momenta at these points – while the coordinates are kept fixed, the momenta
are being integrated over. For these reasons strict equality in (7.11) was replaced
by the similarity sign. In scattering theory applications this difficulty is easily
circumvented due to the simplicity of the linear regime for asymptotic states at
t0 → −∞ and t1 → +∞ (S-matrix theory), but for finite times and nontrivial
quantum states this issue represents a real problem. And this problem becomes
critically important in the cosmological context because the initial state of the
very early quantum Universe cannot be formulated in terms of asymptotic states
of scattering theory.

This problem, in particular, leads to the question of how the boundary condi-
tions on integration histories in the right hand side of (7.11) should be associated
with the arguments of the kernel Uphys on the left and side, how the composi-
tion law for the path integrals over (q, p) in the time intervals [ t0, t1] and [t1, t2]
should look like, or what will be the analogue of the unitary propagation law
for quantum states in the physical (ADM) sector:

Ψphys(g1, t1) =

∫
dg0 Uphys(g1, t1 | g0, t0)Ψphys(g0, t0), (7.15)

not to mention how the physical wave functions Ψphys(g, t) should be associated
with the quantum states Ψ(q, t) in the coordinate representation of the operators
(q̂, p̂). The answers to this set of questions will be partially given in the rest
of this chapter, but before that we will briefly consider the ADM quantization
method in terms of the physical sector of phase space variables Φ∗.
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7.2. Arnowitt-Deser-Misner quantization method

In the ADM formalism (see Chapter 3), the physical degrees of freedom of ar-
bitrary gravitating system are the pairs of the phase variables ΦA = (gA, pA)
(3.4), which in accordance with the previous section become operators satisfy-
ing the canonical commutation relations (7.1). The state of the system in the
set of the gauges (3.11) is the quantum state on one of the space-like hypersur-
faces defined in the four-dimensional manifold with the help of the same gauge
conditions. This state is described by the vector |Ψphys(t) 〉 which satisfies the
Schrödinger equation

i
∂|Ψphys(t)〉

∂t
= Ĥphys( ĝ

A, p̂A) |Ψphys(t) 〉, (7.16)

where the Hamiltonian is given by the formula (3.14).
With the solution of this equation, one can find the quantum averages of all

phase variables Φ̂ = (ĝab, p̂
ab; ϕ̂, p̂) of the system, as well as of the lapse and

shift functions. Indeed, according to (3.5), (3.12) and (3.15), we have

〈 Φ̂(t) 〉 = 〈Ψphys(t) |Φ[ fµ,−Pµ[f ; ĝA, p̂A ]; ĝA, p̂A ] |Ψphys(t) 〉, (7.17)

〈 N̂µ(x) 〉(t) = 〈Ψphys(t) |
∫
d3y Ĵ−1(µ)

(ν)(x,y) |Ψphys(t) 〉ḟν(t,y),

where in the last equation the operator nature of Ĵ−1(µ)
(ν)(x,y) implies that it

is taken as a function of operators of physical variables and Xµ = fµ(t,x)
and Πµ = −Pµ[ fν ; ĝA, p̂A ]. The proper time of the observer, whose world line
is described by the equation x = const, becomes the physical observable. Its
average is given by the expression

〈τ〉 =

∫
dt 〈N

√
1−NaNa/N2 〉. (7.18)

Similarly, the spatial intervals become the quantum observables. In accordance
with the operator nature of the lapse and shift functions in (7.17), the position
of a space-like hypersurface itself is an observable. This fact reflects special fea-
tures of the quantization of the gravitational field, whose universal interaction
determines the properties of space and time, and thereby affects the observer
who cannot be shielded from this influence that has a quantum nature.

Example of ADM quantization: Friedmann universe
with a scalar field

The dynamics of the closed homogeneous universe filled with the scalar matter
will be briefly considered here as a demonstration of the ADM quantization
formalism. The subject of quantization will not only be the matter field but
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also the gravitational configuration of the Friedman model [164] described by
the metric (3.39).

The physical setup we will consider has basically a toy-model nature designed
more for the demonstration of the limitations of the ADM approach, rather
than for revealing some interesting new quantum physics undoubtedly inherent
to the early quantum cosmology. Mainly we will consider the situation when
the dynamics of the model is only slightly different from the evolution of the
classical Universe. The qualitative behaviour of closed Friedmann models in the
Einstein theory is the picture of the world that expands up to some maximal
cosmological radius from the initial singularity, and then contracts back to the
singular state. The expansion process is characterized by the suppression of
the originally present inhomogeneous gravitational modes. Conversely, when
contraction to the singularity, the Universe becomes essentially inhomogeneous
and anisotropic. If we restrict ourselves to the dynamical stage ranging from the
maximal radius to the domains which are sufficiently far from the singularity,
one can take the homogeneous and isotropic model as an approximation of the
closed Universe.

We can assume that the homogeneous gravitational field at the maximal ex-
pansion is generated by the large number of randomly moving particles that fill
uniformly the entire volume of the Universe being in a thermodynamic equi-
librium. To describe particles, it is necessary to introduce the inhomogeneous
matter field, whose separate oscillatory modes correspond to the particles of
different energies. Thus, the consistency condition of the model reduces not to
the requirement of the homogeneity of the matter field, as it is done in the
majority of the toy models [178] which claim to give a self-consistent dynamics
of the homogeneous matter and gravitational fields, but rather to the require-
ment of constancy in the three-dimensional space of such characteristics as the
energy density, the number of particles, etc.

The action of the massless scalar field ϕ reads

Sm = − 1

2

∫
d4x g1/2 gµν∂µϕ∂νϕ. (7.19)

In view of the form of the metric (3.39), we derive the Lagrange function in terms
of the dimensionless scalar field ϕ = l0ϕ and the dimensionless cosmological
radius a (3.41)

Lm =
ε0

2

∫
d3x
√
γ

{
χ2

N
l20a

3 + aϕ∆ϕ

}
, (7.20)

where the covariant Laplacian ∆ is defined by the constant three-dimensional
metric γik. Decomposing the field ϕ(x, t) with respect to the orthonormal sys-
tem of eigenfunctions Zn(x) similarly to (4.56), ϕ(x, t) =

∑
n ϕ
′
n(t)Zn(x), we

obtain the Lagrange function (7.20) in terms of discrete set of degrees of freedom
of the scalar field

Lm =
ε0

2

∑
n

{
ϕ̇′n

2

N
l20a

3 −Naωn2ϕ′n
2

}
. (7.21)
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The superhamiltonian which corresponds (7.21), reads∫
d3xHϕ =

ε0

2a

∑
n

{
P2
n

a2
+ ωn

2a2ϕ′n
2

}
, (7.22)

where Pn are momenta conjugated to ϕ′n.
We take the Hamiltonian constraint (3.42), or (2.125) (rather, its integral

analogue) in the form

H⊥ =
ε0

2

{
− 1

2
(p2 + a2) +

1

2

∑
n

[
P2
n

a2
+ ωn

2a2ϕ′n
2

]}
(7.23)

and perform the canonical transformation of the general ADM procedure (3.4)
in two stages. At first, we make the transformation

(p, a;Pn, ϕ′n)−→ (p′, a′; pn, ϕn),

p = p′ +
V

a′
, a = a′, V ≡

∑
n

pnϕn,

Pn = a′pn, ϕ′n = ϕn/a
′, (7.24)

and then similarly to (3.48)-(3.49), we substitute (a′, p′) by the new phase
variables T and Π:

a′ =
√
−2Π cosT, p′ =

√
−2Π sinT. (7.25)

As a result, the constraint (7.23) takes the following form:

H⊥ =
ε0√

−2Π cosT

{
Π + H +

V 2

4Π cos2 T

}
, (7.26)

where

H =
1

2

∑
n

( p2
n + ωn

2ϕ2
n − 2ϕnpn tanT ). (7.27)

In accordance with the general ADM procedure, let us impose the gauge
condition

T = t (7.28)

and solve the constraint equation (7.26) H⊥ = 0 with respect to Π approxi-
mately in the region of H� 1. Then with an accuracy O(H−1), we obtain the
action

S =

∫
dt

{∑
n

pnϕ̇n −H(t) +
V 2

4H(t) cos2 t
+ . . .

}
(7.29)

in terms of the physical degrees of freedom (ϕn, pn).
From now on, we will consider such a range of the parameter t and such states

for which H(t) cos2 t � 1, therefore, we can neglect the last term in (7.29).
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Consequently, the physical Hamiltonian of the problem may be approximated
by

H(t) =
1

2

∑
n

(
p2
n + ω2

nϕ
2
n − 2 pnϕn tan t

)
. (7.30)

According to (3.54), (7.26), and (7.25) with an accuracy of O(H−1), the expres-
sions for the lapse function and scale factor read

N = l0
(√

2H(t) +O(H−1(t))
)

cos t, a =
(√

2H(t) +O(H−1(t))
)

cos t, (7.31)

since from the solution of the constraint equation we have −Π = H(t)+O(H−1).
We see that in this approximation the gauge (7.28) is equivalent to the choice
of the coordinate condition (3.46), N = R. The condition H(t) cos2 t � 1,
imposed on the range of applicability of our approximation, is equivalent to the
restriction

R� l0, (7.32)

i.e., to the values of the cosmological radius which are essentially greater than
the Planck length.

We will quantize the system described by the Hamiltonian (7.30) in the
Heisenberg representation, and as a first step we write the Heisenberg equa-
tion for ϕn that follows from (7.30):

ϕ̈n + Ωn
2ϕn = 0, (7.33)

where Ωn
2 = ωn

2 +1. As in Sec. 4.4., in order to introduce the particle interpre-
tation of the system, we decompose the Heisenberg operator ϕn(t) with respect
to the two complex-conjugated solutions of this equation un and u∗n:

ϕn(t) = anun(t) + an
∗un
∗(t). (7.34)

The basis functions un and u∗n are chosen so that they satisfy the normalization
conditions

unu̇
∗
n − u̇nun∗ = −i,

therefore, for the creation and annihilation operators an
∗ and an the commu-

tator reads [an, am
∗] = δnm.

Further analysis of the particle interpretation of the system can be done
with the help of the standard procedure of Hamiltonian’s diagonalization [61]
described in Sec. 4.4.. Diagonalization of the Hamiltonian at the moment of the
maximal expansion of the Universe t = 0 takes place in terms of basis functions
of the equation (7.33)

un(t) =
1√
2Ωn

{√
Ωn
ωn

cos Ωnt− i
√
ωn
Ωn

sin Ωnt

}
, (7.35)

which are nontrivial because the frequency ωn in the Hamiltonian and the
frequency in the Heisenberg equation of motion Ωn do not coincide (for Ωn = ωn
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these basis functions would reduce to the standard positive frequency ones
exp(−iωnt)/

√
2ωn). For n = 0 with ω0 = 0 the basis function is not well defined,

but this mode does not have an oscillator nature and should be quantized in
the coordinate (or momentum) representation which we will not consider in
much detail2. The modes with n > 0 have a particle interpretation in terms of
the creation and annihilation operators associated with the modes which would
diagonalize the Hamiltonian at later moments of time and which do not coincide
with (7.35).

In our toy model setup the initial state of the system is prescribed at the mo-
ment t = 0 of the maximal expansion of the Universe when the non-stationarity
of the metric and of spacetime curvature is minimal. The proper cosmolog-
ical time that the Universe spends in the region of the maximal expansion
τ =

∫
dtN =

∫
dtR(t) is large, therefore, despite the fact that we neglected the

interaction of particles from the very beginning, this interaction is sufficient for
the collision relaxation to bring the system of particles in the Universe into the
state of the thermal equilibrium. Therefore, it is reasonable to define the initial
state as the equilibrium or thermal density matrix ρ̂ at some temperature.

The average value of any physical observable Ô may be defined by formula

〈 Ô(t) 〉 = tp (ρ̂O(t)) = 〈O(t) 〉, (7.36)

where 〈O(t)〉 should be understood as the quantum averaging of the Heisenberg
operator O(t) over a pure multiparticle state from the space of occupation
numbers, and the bar means the statistical averaging with respect to ρ̂. The
details of such calculations for a thermal density matrix can be found in [71,
168].

Here we want to stress that in the approximation of large H(t) the calculation
of the quantum average of the scale factor gives

〈 â(t) 〉 = 〈
√

2H(t) +O(H−1(t)) 〉 cos t =
√

2E(t) cos t
{

1 +O(E−1(t))
}
,

(7.37)
where E(t) is the evolving in time quantum average of the Hamiltonian

E(t) = 〈 Ĥ(t) 〉. (7.38)

This quantum average is ultraviolet divergent, and because of the essential lack
of covariance and nonlinearity of the physical observable â it is hopeless to have
a renormalization of the arising divergences by local covariant counterterms in
the original action of the theory. Therefore, the obtained result makes sense
only in the situation when the contribution of large occupation numbers in
E(t) is a priori dominating the vacuum polarization contribution subject to
UV renormalization. This setup is not applicable in the physically interesting

2One can check that the dynamics of the quasi-Gaussian wave packet in the coordinate

representation of ϕ0 with the growth of time will be qualitatively described by a quantum
spreading of this packet.
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case of the early quantum cosmology when the vacuum polarization effects and
nontrivial scaling behavior play the dominant role. ADM quantization in view of
its nonlocality, nonlinearity and lack of manifest covariance (which can hardly
be restored even at the implicit level) is incapable of solving this important
class of quantum problems. For this reason, we go over to another quantization
approach to gravity theory.

7.3. Dirac-Wheeler-DeWitt quantum
geometrodynamics

The Einstein-Hamilton-Jacobi theory provides an intermediate link between the
classical theory of gravity and Dirac-Wheeler-DeWitt quantization, historically
called a quantum geometrodynamics, and we begin the review of this approach
with its analysis. For simplicity of presentation, we restrict ourselves with the
case of the pure gravitational field and consider only the closed cosmology
systems with H0 = 0.

Einstein-Hamilton-Jacobi theory as a semiclassical approximation
to quantum geometrodynamics

The Hamilton-Jacobi equations (2.44), (2.45) for spatially closed cosmological
systems with qi = gab(x) and ∂/∂qi = δ/δgab(x), in accordance with (2.94) and
(2.95), take the following form:

Gabcd
δS

δgab

δS

δgcd
− g1/2 3R = 0, (7.39)

−2gac

[ δS

δgcb

]
|b

= 0, (7.40)

∂S

∂t
= 0. (7.41)

The last equation means that the Hamilton-Jacobi function S of the gravita-
tional field does not depend on time t. This is a manifestation of the “frozen”
formalism for closed cosmological systems, as described in Chapter 3. Time in-
dependence of S means that formally the time evolution can be incorporated in
the system only with the aid of the gauge conditions (2.48) that by construction
explicitly depend on time.

Thus, S is a functional of the three-dimensional metric and of the 6− 4 = 2
functions αA(x) which represent the independent integration constants in the
complete integral of the system of equations (7.39), (7.40).

The equations (7.40) have a simple geometrical meaning since they reflect the
invariance of the functional S[gab (x) , αA (x)] with respect to the coordinate
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transformations of the metric

∆fgab(x) = 2f(a|b)(x), (7.42)

∆fS =

∫
d3x

δS

δgab(x)
∆fgab(x) =−2

∫
d3x
[ δS

δgab(x)

]
|b
fa(x) ≡ 0. (7.43)

Therefore, S is actually the functional not of the three-dimensional metric, but
of three-dimensional geometry that encompasses the equivalence class of the
three-dimensional metrics connected by the coordinate transformations.

The equation (7.39) is called the Einstein-Hamilton-Jacobi equation (EHJ)
and it represents the basic equation of the classical geometrodynamics. Actually,
this equation contains the entire dynamics of the classical theory of gravity. In
accordance with the results of Sec. 2.1., the evolution of a gravitating system
is restored as a solution of systems (2.47), (2.48), where the gauges are chosen
to be explicitly time-dependent.

The Einstein-Hamilton-Jacobi theory is a semiclassical approximation to the
quantum theory. However, the gravitation is a degenerate system with con-
straints and this approximation has the special gauge-theoretic features which
are follows.

In the semiclassical approximation, the amplitude of the state of the quantum
system is described in the coordinate representation by the superposition of the
functions of the form exp {iS(q, α)} with different values of parameters α, and
with the corresponding amplitudes P (α). This superposition forms the wave-
package

Ψ =

∫
dαP (α) eiS(q,α). (7.44)

The center of gravity of such package or the point in the coordinate space
describing the classical system position is determined as a stationary point of
the integral (7.44) with respect to the variables α,

∂S

∂αA
= βA, (7.45)

where the parameters βA = − 1
i ∂ lnP (α)/∂αA depend on the form of the ampli-

tude A(α). In non-degenerate systems, the equations (7.45) contain all the nec-
essary information to find the classical evolution. In systems with constraints,
the equations (7.45) or (2.47) are not sufficient, since they define the surface in
the space of the phase coordinates that consists of a set of the classical trajec-
tories describing the same physical state and connected by the transformations
of the “group” of invariance of the action (2.30). To select a single physical rep-
resentative, it is necessary to impose the gauge (2.32), i.e., to introduce another
surface in the space of the variables q, described by the equation (2.48), that
have a single intersection point with the initial one.
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The space of three-dimensional geometries, where the action S is determined
as a solution of EHJ equation (7.40), is usually called a superspace3 [167].
However, since we can operate in a constructive way only in terms of the three-
dimensional metrics, we use the term “superspace” to call the manifold of the
three-dimensional metrics gab(x), where the action S satisfying equations (7.40)-
(7.42) is determined.

Now let us proceed to the construction of the exact quantum theory, whose
quasi-classical approximation would give the EHJ theory.

Dirac quantization method and the Wheeler-DeWitt equation

An alternative to the ADM quantization approach is the Dirac quantization
method for theories subject to constraints [40]. The operators of the original
phase space Φ̂ ≡ (q̂, p̂), in contrast to the previous ADM method, are treated
as independent and satisfying the usual canonical commutation relations

[ Φ̂, Φ̂′ ] = i{Φ, Φ′ }. (7.46)

These operators are defined on a maximally wide space of vectors. However,
the vectors of the physically admissible states may not be arbitrary, but only
those that satisfy the quantum constraints as the equations

Ĥµ(q̂, p̂) |Ψ 〉 = 0 (7.47)

and the Schrödinger equation

∂|Ψ 〉
∂t

= Ĥ0(q̂, p̂) |Ψ 〉. (7.48)

The latter reduces to the independence |Ψ 〉 on t for the special case of a closed
world with H0 ≡ 0.

The consistency of the system of equations (7.47), (7.48) is guaranteed by the
involution relations (2.29), provided that one choose such order of operators in
the constraints Ĥµ and in the Hamiltonian Ĥ0, that the Poisson brackets in
(2.29) are mapped into the quantum commutators constructed on the basis of
(7.46):

[ Ĥµ, Ĥν ] = ÛαµνĤα, [ Ĥ0, Ĥµ ] = V̂ νµ Ĥν , (7.49)

with the operators of structure functions Ûαµν and V̂ νµ standing to the left of the
operators of constraints.

In the coordinate representation of the commutation relations (7.46), the
momenta p̂ = ∂/i∂q, the coordinates q̂ are c-numbers, and |Ψ〉 = Ψ(q) =
= Ψ [ gab(x) ], so that the equation (7.47) takes the form

Hµ

(
q,

∂

i∂q

)
Ψ(q) = 0, (7.50)

3It should not be confused with the superspace in the modern supersymmetric theories.

These are different notions.
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with some particular choice of the operator realization Hµ(q, ∂/i∂q) of Ĥµ,
which includes a particular operator ordering of q and p̂ and possible quantum
correction terms O(~).4

Thus, in quantum geometrodynamics with ∂/i∂q ≡ δ/iδgab(x) at least naively
we have {

−Gabcd
δ

δgab

δ

δgcd
− g1/2 3R

}
Ψ [ gab] = 0, (7.51)

− 2gac

[ δΨ [ gab]

δgcb

]
|b

= 0. (7.52)

The first of these equations is a widely acclaimed Wheeler-DeWitt equation
[53] which, of course, represents an infinite set of equations – one per each spatial
point. Its operator realization is thus far purely symbolic and will be discussed
later. On the contrary, the operator ordering in (7.52) has a sufficiently strong
geometrical ground because the equation (7.52), similarly to (7.43), incorpo-
rates the local coordinate invariance of Ψ [ gab(x) ], which rather firmly fixes the
operator realization of quantum momentum constraints.

The Wheeler-DeWitt equation is a basic equation of quantum geometrody-
namics. Obviously, the quasi-classical approximation leads to its solution of the
form

Ψ = eiS ,

where S satisfies the equations (7.40) and (7.42).
Thus, comparing this approach with the ADM quantization in reduced phase

space, we find the two different situations. In quantum geometrodynamics –
the Dirac quantization scheme – the operators (q̂, p̂) are independent but the
physical states are subject to the constraints (7.47). In the ADM (or reduced
phase space) quantization the operators (q, p) identically satisfy the constraints
but the states are arbitrary. And no unitary equivalence exists between these
two approaches, because the unitary equivalent representations have the same
commutation relations, whereas the commutation relations (7.46) are funda-
mentally different from (7.2).

Another difficulty is that the Dirac quantization scheme is intrinsically incom-
plete, because a priori it lacks the algorithm for the physical inner product of
quantum states that would give quantum expectation values and probabilities.
The usual L2 inner product

〈Ψ ′ |Ψ 〉 =

∫
dq Ψ ′∗(q)Ψ(q) (7.53)

does not make sense, because the physical states Ψ(q), which are annihilated
by constraints, have a distributional nature ∼ δ(Ĥµ) and make this integral

4The inclusion of these terms will require to reinstate explicitly the Planck constant ~
which will be done later.
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divergent, [ δ(Ĥ) ]2 ∼ ∞. This inner product should have a nontrivial integra-
tion measure restricting the range of integration over q to a certain subspace
corresponding to a given time slice of the whole spacetime (as long as physical
time is hidden among the variables q). The attempt to interpret as the physical
inner product the flux of the conserved current of the Wheeler-DeWitt equation
(7.51) [53, 165, 182] – the analogue of the conserved current of the second-order
Klein-Gordon equation,

jab(x) = Gabcd

{
Ψ∗

δΨ

iδgcd(x)
− δΨ∗

iδgcd(x)
Ψ

}
, (7.54)

requires justification from first principles of quantization. Moreover, it demands
specification of the surface in the space of 3-metrics q = gab(x) through which
the flux of this current is running, this specification establishing the above
mentioned association with the time slice of spacetime.

Consistency between the ADM quantization and quantum geometrodynamics
as the Dirac quantization of gravity theory was attained in the series of works
[204, 205, 206, 207, 208, 209, 210] where the questions of the above type were
clarified and checked at least in the first nontrivial order of semiclassical expan-
sion – one-loop approximation. It turned out that direct unitary equivalence
between these quantization methods is impossible and can only be achieved
by embedding the Dirac scheme into a wider quantization framework. This
framework is the Batalin-Fradkin-Vilkovisky (BFV) operator quantization of
constrained systems [213, 46, 214, 215, 216, 217, 218, 219, 220] stemming from
the BRST method5 [211, 212].

7.4. Dirac quantization from
Batalin-Fradkin-Vilkovisky formalism

Here we give a brief overview of the BRST/BFV formalism in gauge systems
with first class constraints [211, 212, 213, 46, 214, 215, 217, 218, 219, 220].
Within the technique of the relativistic phase space of gauge and ghost fields
[213, 46] we build the operator of the unitary evolution in their representation
space and formulate the BRST invariant physical states. A special Batalin-
Marnelius (BM) procedure of gauging out the BRST symmetry in the subspace
of these states [221, 222, 223] leads to a well-defined physical inner product in
the space of BRST singlets [204, 206, 208]. Then, the Dirac quantization scheme
turns out to be a special truncation of the BFV formalism [206, 208, 210] – a
particular realization of this BM gauge fixing procedure – which allows one to
construct a path integral representation for the solution of the Wheeler-DeWitt
equations. In the subsequent section these results are explicitly checked in the

5BRST refers to Becchi, Rouet, Stora, and Tyutin [211, 212].
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first one-loop order of semiclassical expansion which, in particular, allows one
to formulate a unitary map from the Wheeler-DeWitt (Dirac) wave functions
Ψ(q) to the physical states Ψphys(g) of the reduced phase space quantization.

BFV formalism

We begin by reminding the reader that the ADM canonical formalism incorpo-
rates splitting the full configuration space of gµν into phase space coordinates
qi = gab(x), and non-dynamical Lagrange multipliers Nµ = (N⊥(x), Na(x)) in
the canonical action (2.27) or (2.124). The momenta pi are conjugated to qi,
whereas the variables Nµ do not have conjugated momenta. In what follows
we will use condensed canonical notations when the field labels carry together
with discrete indices also spatial coordinates, and contraction of indices i or µ
implies spatial (but not time) integration. In open models with asymptotically
flat (or other boundaries like horizons, etc.) H0(q, p) represents the relevant
surface integral specified by boundary conditions which are the part of physical
setting for the gravitational system. Below we consider the case of spatially
closed cosmology with H0(q, p) = 0.

The diffeomorphism invariance of the theory has a manifestation in Poisson
brackets algebra of constraints (2.29) with the structure functions Uλµν = Uλµν(q)
which depend on phase-space coordinates q. At the quantum level the classical
constraints take the form of equations on physical quantum states (7.47). In the
functional coordinate representation of quantum gravity they form the system
of the Wheeler-DeWitt equations on the wave function 〈 q |Ψ 〉 = Ψ(q). Their
consistency requires the commutator algebra (7.49) to hold with the operator
structure functions Ûλµν standing to the left of Ĥλ.

This BFV quantization generalizes this Dirac quantization scheme by extend-
ing the representation space of the original phase space variables qi, pi to that
of the relativistic phase space variables. The latter include together with qi, pi
the canonically conjugated pairs of Lagrange multipliers and their momenta
pµ and canonical pairs of Grassman (fermionic) ghosts Cµ,Pµ and anti-ghosts
C̄µ, P̄µ,

QI , PI = qi, pi; N
µ, pµ; Cµ,Pµ; C̄µ, P̄µ, (7.55)

[QI , PJ ] = i δIJ . (7.56)

Here [A,B] denotes a supercommutator taking into account the Grassman par-
ity n of A and B, [A,B ]± = AB − (−1)n(A)n(B)BA. In gravity theory with
bosonic matter fields n(q) = n(N) = 0 and n(C) = n(P) = n(C̄) = n(P̄) = 1.
The canonical commutation relations (7.56) represent the quantum version of
classical Poisson superbrackets commutators {QI , PJ} = i δIJ (we use units with
~ = 1). Ghost variables have Hermiticity properties compatible with these com-
mutation relations

Cµ† = Cµ, P†µ = −Pµ, C̄†µ = −C̄µ, P̄µ† = P̄µ. (7.57)
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In what follows we will regularly omit the hat notation for operators (7.55)
and only use it in case when they have to be distinguished from their c-number
eigenvalues. The hat notations will as a rule be used for composite operators.
State vectors in the representation space of all relativistic variables will be
denoted by double ket notations ||Ψ〉〉 (contrary to vectors |Ψ 〉 in the repre-
sentation space of the original operators (q̂i, p̂i)). The coordinate representation
will be introduced as follows:

||Q 〉〉 ≡ || q,N,C, C̄〉〉, Q̂I ||Q〉〉 = QI ||Q〉〉, Ψ(Q) = 〈〈Q ||Ψ〉〉, (7.58)

〈〈Ψ1 ||Ψ2〉〉 =

∫
dQΨ1

∗(Q)Ψ2(Q), (7.59)

where the BRST inner product is defined in the sense of Berezin integration
over Q. To finish description of notations for BFV formalism we mention that
we will also need the momentum representation in the sector of the Lagrangian
multipliers with the interchanged roles of Nµ and pµ. It will be denoted by
tilde, and the corresponding set of variables will look like

Q̃I , P̃I = qi, pi; pµ,−Nµ; Cµ,Pµ; C̄µ, P̄µ, Ψ̃(Q̃) = 〈〈 Q̃ ||Ψ 〉〉. (7.60)

The basic object of the BRST/BFV technique is the nilpotent fermionic
BRST operator Ω̂ acting in the space of ||Ψ〉〉 and satisfying the master equa-
tion

[Ω̂, Ω̂] ≡ Ω̂2 = 0. (7.61)

This equation allows one to look for the solution as an expansion in powers
of the ghosts Cµ and their momenta Pµ starting with the combination Ω̂ =

pαP̄α+CµĤµ+O(PC2). The coefficients of this expansion Ĥµ, Û
λ
µν , Û

λσ
µνα, ... are

the structure functions of the gauge algebra of constraints beginning with (7.49)
– higher order structure functions follow from applying the Jacobi identity to
multiple commutators of (7.49) with Ĥσ [214, 215, 219]. In non-supersymmetric
gravity theory, which we consider here, this sequence terminates at Ûλσµνα = 0,

and Ω̂ takes the form

Ω̂ = pαP̄α + CµĤµ +
1

2
CνCµÛλµνPλ, Ω̂† = Ω̂. (7.62)

It is Hermitian in the BRST inner product (7.59) in accordance with the Her-
miticity properties of ghost variables (7.57), provided the quantum Dirac con-
straints have the anti-Hermitian part6

Ĥµ − Ĥ†µ = iÛλµλ. (7.63)

6In higher rank gauge theories with nonvanishing higher order structure functions this

Hermiticity properties are modified by their higher order contributions.
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In models with H0(q, p) 6= 0 this BRST operator determines also its BRST
extension Ĥ = Ĥ0 + O(CP) by the equation [Ω̂, Ĥ0] = 0 and the so-called
unitarizing Hamiltonian

ĤΦ = Ĥ0 +
1

i
[ Φ̂, Ω̂ ]. (7.64)

It explicitly depends on the gauge fermion Φ, n(Φ̂) = 1, which provides gauge
fixing in the BRST/BFV formalism. In parametrization invariant closed cos-
mology Ĥ0 = 0, and the unitarizing Hamiltonian reduces to the commutator of
the BRST operator and gauge fermion.

The unitary evolution operator ÛΦ(t, t−) acting in the space of ||Ψ〉〉 is a
solution of the following Cauchy problem:

i~
∂

∂t
ÛΦ(t, t−) = ĤΦÛΦ(t, t−), ÛΦ(t−, t−) = I. (7.65)

It is obvious that from [Ω̂, [Φ̂, Ω̂]] ≡ 0 and [Ω̂, ĤΦ] = 0 the BRST operator is a
constant of motion in this evolution,

[ Ω̂, ÛΦ(t, t−) ] = 0, (7.66)

so that it plays the role of the conserved BRST charge and serves as a generator
of BRST transformations in the relativistic phase space.

In the coordinate representation the kernel of the unitary evolution has a
representation of the canonical path integral

UΦ( t+, Q+| t−, Q−) ≡ 〈〈Q+ || ÛΦ(t+, t−) ||Q− 〉〉

=

∫
Q(t±)=Q±

D[Q,P ] exp

{
i

∫ t+

t−

dt
(
PIQ̇

I −HΦ(Q,P )
)}

, (7.67)

where HΦ(Q,P ) is the QP -symbol of the unitarizing Hamiltonian given by
the Poisson superbracket of c-number symbols Φ and Ω of the operator gauge
fermion and BRST charge HΦ(Q,P ) = {Φ,Ω } (remember that H0 = 0). Also,
D[Q,P ] is a Liouville integration measure in the full boson-fermion phase space
of c-number histories:

D[Q,P ] =
∏
t

dQ(t)
∏
t∗

dP (t∗). (7.68)

The difference between the set of points t = (tN , ...t1) and t∗ = (t∗N+1, ...t
∗
1),

N →∞, over which the product of integration measure factors is taken, reflects
the typical slicing of the path integral into a sequence of multiple integrals in
the decomposition of the full time segment [t+, t−] into infinitesimal pieces.
This decomposition, t+ > tN > tN−1 > ... > t1 > t−, t+ > t∗N+1 > tN >
t∗N > ... > t1 > t∗1 > t−, implies that the points t∗i , at which the integrated
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momenta are taken, are associated with “interiors” of the segments [ti+1, ti]
whose boundaries carry the integrated coordinates – so that the number of
momentum integrations is by one larger than those of coordinate ones.

In the momentum representation for Lagrangian multipliers Q̃I = qi, πµ,
Cµ, C̄µ, cf. (7.60), the unitary evolution kernel has a similar path integral rep-
resentation:

ŨΦ( t+, Q̃+| t−, Q̃−) ≡ 〈〈 Q̃+ || ÛΦ(t+, t−) || Q̃− 〉〉

=

∫
Q̃(t±)=Q̃±

D̃[Q,P ] exp

{
i

∫ t+

t−

dt
(
P̃I

˙̃QI −HΦ(Q,P )
)}

, (7.69)

D̃[Q,P ] =
∏
t

dQ̃(t)
∏
t∗

dP̃ (t∗), (7.70)

and is of course related by the Fourier transform to the kernel (7.67)

ŨΦ( t+, Q̃+| t−, Q̃−) =

∫
dN+dN− e

−ip+N+UΦ( t+, Q+| t−, Q−) eip−N−

(7.71)
in full accordance with the fact that two symplectic forms in the integrands of
path integrals on the left and right hand sides here are related by∫ t+

t−

dt P̃ ˙̃Q =

∫ t+

t−

dt PQ̇− p+N+ + p−N−, p± ≡ π(t±), N± ≡ N(t±). (7.72)

The principal theorem of the BFV quantization is that the matrix elements of
the unitary evolution operator ÛΦ(t, t−) between the BRST-invariant physical
states annihilated by Ω̂ are independent of the choice of the gauge fermion [219]:

Ω̂ ||Ψ1,2〉〉 = 0 =⇒ δΦ〈〈Ψ1|| ÛΦ(t+, t−) ||Ψ2〉〉 = 0. (7.73)

The logic of the above BRST/BFV construction is based on the observation
that relativistic gauge conditions, involving time derivatives of Lagrange multi-
pliers, make the latter propagating and having nonvanishing canonical momenta
pµ which are absent in the original action. To compensate the contribution of
these artificially introduced degrees of freedom and the degrees of freedom which
have to be excluded by first class constraints one introduces dynamical ghosts
and antighosts of the statistics opposite to those of Ĥµ. Due to statistics they
effectively subtract in quantum loops the contribution of these gauge degrees
of freedom. However, a similar subtraction should be done in external lines of
Feynman diagrams, which means that not all quantum states in BRST space
are physical. Physical states form a subspace belonging to the kernel of the
BRST operator. In this subspace due to the above theorem the transition am-
plitudes and quantum averages are independent of the choice of gauge fixing
procedure – the corner stone of quantizing the gauge invariant systems.
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Batalin-Marnelius gauge fixing and the physical inner product

Physical states should be BRST invariant Ω̂ ||Ψ 〉〉 = 0. This equation does not
uniquely select its solution because in view of the nilpotent nature of Ω̂ the
BRST transformed state ||Ψ 〉〉′,

||Ψ 〉〉′ = ||Ψ 〉〉+ Ω̂ ||Φ 〉〉, (7.74)

with an arbitrary ||Φ 〉〉 also satisfies the BRST equation. This invariance results
in the problem of constructing (or regulating) the physical inner product.

Problem is that the original inner product (7.59) for physical states represents
the 0×∞-indeterminacy. The essence of this indeterminacy can be qualitatively
explained by the fact that squaring of the physical state Ψ(Q) ∼ δ(Ω̂) in (7.59)
gives a divergent factor whereas the integration over Grassman variables mul-
tiplies it by zero. This inner product can be regulated by transforming the
BRST-invariant state ||Φ 〉〉 to a special gauge as it was suggested by Batalin
and Marnelius in [221, 222] (see also [223]):

||Ψ 〉〉 → ||ΨBM 〉〉 : P̂µ||ΨBM 〉〉 = 0, N̂µ||ΨBM 〉〉 = 0, (7.75)

ˆ̄Pµ||ΨBM 〉〉 = 0 (7.76)

(the last condition is in fact a corollary of the second one, [Ω̂,Nµ] ||ΨBM 〉〉 = 0).
The consistency of this gauge with the BRST-invariance of ||ΨBM 〉〉 implies that
it also satisfies the quantum Dirac constraints

0 =
1

i
[ Ω̂, P̂µ] ||ΨBM 〉〉 = (Ĥµ + CνÛλνµP̂λ) ||ΨBM 〉〉 = Ĥµ ||ΨBM 〉〉, (7.77)

and its wave function is independent of ghost variables,

∂

∂Cµ
ΨBM (Q) = 0,

∂

∂C̄µ
ΨBM (Q) = 0. (7.78)

Together with (7.75) this means that ΨBM (Q) has the form

〈〈Q ||ΨBM 〉〉 = 〈 q |Ψ 〉 δ(N) ≡ Ψ(q) δ(N), (7.79)

where the “matter” part Ψ(q) satisfies quantum Dirac constraints in the coor-
dinate representation,

ĤµΨ(q) = 0. (7.80)

According to [221, 222] the physical inner product of wave functions ||ΨBM 〉〉
can be regularized by a special operator-valued measure which is explicitly built
with the aid of the gauge fermion Φ̂

〈〈Ψ ′ ||Ψ〉〉phys = 〈〈Ψ ′BM || e[ Φ̂,Ω̂ ]||ΨBM 〉〉. (7.81)
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The choice of this fermion is immaterial because

δΦ〈〈Ψ ′ ||Ψ〉〉phys =

∫ 1

0

ds 〈〈 Ψ̃ ′BM || e(1−s)[ Φ̂,Ω̂ ] [ δΦ̂, Ω̂ ] es[ Φ̂,Ω̂ ]||ΨBM 〉〉 = 0,

(7.82)
since [Ω̂, [Φ̂, Ω̂]] = 0 and Ω̂ ||ΨBM 〉〉 = 0. However, with a special choice of this
fermion the physical inner product (7.81) resolves the 0 ×∞ uncertainty and
becomes well defined [221].

This is easy to show if this fermion is constructed with the aid of gauge
conditions functions χ̂µ = χµ(q̂, p̂) which commute with themselves, [χ̂µ, χ̂ν ] =
0, and with the structure functions operators, [χ̂µ, Ûλαβ ] = 0 (in gravity theory

this is coordinate gauge conditions χµ(q) commuting with Uλαβ = Uλαβ(q)). For

the fermion Φ̂BM in the form Φ̂BM = ˆ̄Cµχ̂
µ we have

[ Φ̂BM , Ω̂ ] = ipµχ̂
µ + iC̄µĴ

µ
ν C

ν , Ĵµν =
1

i
[ χ̂µ, Ĥν ]. (7.83)

Then the physical inner product for Batalin-Marnelius wave functions (7.79) in
the coordinate representation with p̂µ = ∂/i∂Nµ takes the form

〈〈Ψ ′ ||Ψ〉〉phys =

∫
dq dN dC dC̄ Ψ ′∗(q) δ(N) e−iC̄µĴ

µ
ν C

ν+χ̂µ ∂
∂Nµ δ(N)Ψ(q)

= 〈Ψ ′ |
∫
dπ dC dC̄ e−iC̄µĴ

µ
ν C

ν+ipµχ̂
µ

|Ψ 〉. (7.84)

This leads to the physical inner product as a special operator valued measure
M̂ acting in the space of Dirac wave functions |Ψ ′ 〉 and |Ψ 〉 endowed with the
auxiliary L2 inner product (7.53),

〈Ψ ′ |Ψ 〉phys ≡ 〈〈Ψ ′ ||Ψ〉〉phys = 〈Ψ ′ | M̂ |Ψ 〉, (7.85)

M̂ =

∫
dπ dC dC̄ e−iC̄µĴ

µ
ν C

ν+ipµχ̂
µ

= δ(χ̂) det Ĵµν
(

1 +O
(

[ χ̂, Ĵ ]
))
. (7.86)

This measure is known in quadratures as an explicit integral over ghost fields
and Lagrangian multipliers momenta. In the leading semiclassical order in
[ χ̂, Ĵ ] = O(~), this integral allows one to disentangle the delta function of
gauge conditions, δ(χ̂) =

∏
µ δ(χ̂

µ), which is well defined in view of their com-

mutativity.7

The expression (7.86) is the analogue of the time-local measure in the canon-
ical Faddeev-Popov path integral [202] with the operator (7.83) semiclassically
represented by the Poisson bracket Ĵµν = {χµ, Hν}. As we will show below by
direct calculations in the one-loop (subleading in ~) order this inner product
[205, 206, 208, 209]

〈Ψ ′ |Ψ 〉phys =

∫
dq Ψ ′∗(q) δ(χ(q)) det Ĵµν Ψ(q) +O(~) (7.87)

7This, however, does not save us from extra corrections, because Jµν (q̂, p̂) depends on the

momentum p̂i and is a differential operator acting in the space of q.
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for semiclassical wave functions Ψ(q) and Ψ ′(q) is independent of the choice of
χµ(q) and is consistent with the Hermiticity property8 (7.63) [209].

Path integral representation in Dirac quantization scheme

Transition to the BM gauge can in fact be obtained by a simple procedure of
truncation of BRST invariant wave functions to the sector of “matter” vari-
ables, that was suggested in [206, 208]. Introduce a wave function Ψ(q) in the
representation space of q̂i, p̂i which can be obtained from the solution ||Ψ〉〉 of
the BRST equation Ω̂||Ψ〉〉 = 0 by

Ψ(q) =

∫
dN Ψ(q,N,C, C̄)

∣∣
C=0

. (7.88)

As we show below, from the BRST equation it follows that this function satisfies
quantum Dirac constraints and is independent of the antighost variable C̄ (that
is why the argument C̄ of the right-hand side is omitted on the left-hand side
of this definition):

ĤµΨ(q) = 0,
∂

∂C̄µ
Ψ(q) = 0. (7.89)

Both properties follow from the BRST equation which in the coordinate repre-
sentation reads as

Ω̂ Ψ(Q) =

(
∂

∂Nµ

∂

∂C̄µ
+ CµĤµ +

i

2
CνCµÛλµν

∂

∂Cλ

)
Ψ(Q) = 0. (7.90)

Integrating this equation over the Lagrange multipliers N in infinite limits and
assuming that Ψ(Q) falls off sufficiently rapidly at N → ±∞, one finds that
the first term of (7.90) vanishes. Then one can differentiate the result with
respect to the ghost field Cµ and subsequently put C = 0. This proves the first
of relations (7.89). The second relation follows from multiplying Eq. (7.90) by
Nµ, putting C = 0 and integrating over N by parts in the remaining first term
of this equation

0 =

∫
dN Nµ Ω̂ Ψ(Q)

∣∣
C=0

=

∫
dN Nµ ∂

∂Nν

∂

∂C̄ν
Ψ(Q)

∣∣
C=0

. (7.91)

This truncation of the BRST quantization scheme to the Dirac quantization
suggested in [206, 208] serves in fact as a realization of the Batalin-Marnelius
gauge fixing (7.75) of the BRST symmetry (7.74). To put the generic BRST
state into the Batalin-Marnelius gauge it is enough to take the bosonic “body”

8Even though this Hermiticity property holds with respect to another – auxiliary – inner

product (7.53) different from (7.87).
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of its wave function, integrate it over the Lagrange multipliers argument N and
multiply by δ(N):

||Ψ〉〉 → ||ΨBM 〉〉 : ΨBM (Q) = δ(N)

∫
dN ′ Ψ(q,N ′, C, C̄)

∣∣
C=0

. (7.92)

Truncation similar to (7.88) for the kernel of the unitary evolution (7.67)
reads

U(q+, q−) =

∫
dN+ dN−UΦ( t+, Q+| t−, Q−)

∣∣
C±=0

. (7.93)

This object can be represented as a matrix element of ÛΦ(t+, t−) between
the following two states ||Ψ±〉〉 which are both zero vectors of the Lagrangian
multiplier momentum and trivially satisfy the BRST equation:

U(q+, q−) ≡ 〈〈Ψ+|| ÛΦ(t+, t−) ||Ψ−〉〉, (7.94)

Ψ±(q,N,C, C̄) = δ(q − q±)δ(C)δ(C̄), (7.95)

p̂α||Ψ±〉〉 = 0, Ω̂ ||Ψ±〉〉 = 0. (7.96)

Therefore, in virtue of the main theorem of BRST quantization it is independent
of the choice of the gauge fermion Φ in ÛΦ(t+, t−):

δΦU(q+, q−) = 0, (7.97)

which guarantees the uniqueness of its definition. The second important prop-
erty is that the kernel (7.93) is independent of t± in parametrization invariant
theory with H0 = 0 because

i
∂

∂t+
U(q+, q−) = 〈〈Ψ+||

1

i
[ Φ̂, Ω̂ ] ÛΦ(t+, t−) ||Ψ−〉〉 = 0 (7.98)

in view of the Schrödinger equation (7.65) for ÛΦ(t+, t−). This allows one to
omit Φ and t± labels in the left-hand side of the definition (7.93).

Finally, applying the same derivations as in (7.90)-(7.91) to the main BRST

equation (7.66) for ÛΦ(t+, t−), one proves that this kernel is independent of
antighosts C̄±µ and satisfies quantum Dirac constraints with respect to both
arguments

Ĥµ U(q, q′) = 0, U(q, q′)
←−
H ′†µ = 0. (7.99)

Integration over N± in (7.93) implies that this kernel can be interpreted
as the unitary evolution kernel in the momentum representation of Lagrange
multipliers (7.71) at zero values of p±,

U(q, q′) =

∫
dN+dN−e

−ip+N+UΦ( t+, Q+| t−, Q−) eip−N−
∣∣∣
p±=C±=0

= ŨΦ( t+, Q̃+| t−, Q̃−)
∣∣∣
p±=C±=0

. (7.100)
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Therefore, it has the path integral representation (7.69) with the symbol of the
unitarizing Hamiltonian – the Poisson superbracket of the gauge fermion Φ and
BRST charge Ω,

U(q+, q−) =

∫
Q̃(t±)=Q̃±

D̃[Q,P ] exp
[
i

∫ t+

t−

dt
(
P̃I

˙̃QI − {Φ,Ω}
)] ∣∣∣∣∣

p±=C±=0

.(7.101)

There exists a special choice of the gauge fermion, Φ = PµNµ + C̄µχ
µ(q),

which generates in the Lagrangian formalism (after integrating out the phase
space momenta) calculationally most useful relativistic gauge conditions of the
form Ṅµ−χµ(q) = 0 [213, 46, 217, 218]. With this fermion (note that it differs
from the BM gauge fermion Φ = C̄µχ

µ(q)) the path integral becomes

U(q+, q−) =

∫
D̃[Q,P ] exp

[
i

∫ t+

t−

dt
(
P̃I

˙̃QI −NµHµ − pµχµ

−C̄µJµν Cν − Pα(P̄α + UαµνN
µCν)

)] ∣∣∣
Q̃(t±)=Q̃± p±=C±=0

. (7.102)

A standard procedure of transition to the unitary gauge χµ(q) = 0 consists in
rescaling the gauge function χµ by a small numerical parameter ε, χµ → χµ/ε
and making the change of integration variables pµ and C̄µ (with a unit Jacobian)

pµ → εpµ, C̄µ → εC̄µ. (7.103)

Note that boundary conditions at t = t± admit this change of variables, and all
this does not affect the answer for U(q, q′) in view of its gauge independence.

Then in the limit ε → 0 the kinetic terms −Nµṗµ and P̄α ˙̄Cα disappear from
the integrand of (7.102), Gaussian integration over ghost momenta does not
contribute any field-dependent measure, and the projector to Dirac states takes
the form of the usual canonical Faddeev-Popov path integral

U(q+, q−) =

∫
D[ q, p ]DN DπDC DC̄ ×

× exp
{
i

∫ t+

t−

dt ( piq̇
i −NµHµ − pµχµ − C̄µJµν Cν)

} ∣∣∣
q(t±)=q±, p±=C±=0

=

∫
q(t±)=q±

D[ q, p ]DN
( ∏
t 6=t±

δ(χ) det Jµν

)
e
i
∫ t+
t−

dt ( piq̇
i−NµHµ )

, (7.104)

in which, however, the gauge fixing factor δ(χ) detJµν is absent at the both end
points t±. This completely specifies the expression in the right-hand side (7.11)
formulated above and proves all its properties – projection on the subspace
of Dirac constraints (7.99), gauge independence (7.97) and independence of
the choice of t± (7.98). Its relation to the physical sector evolution operator
standing in the left-hand side of (7.11) is discussed below.
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7.5. Semiclassical approximation

The formalism of the above type should stand verification by a viable calcu-
lational scheme. Such a scheme applicable to theories of a general type is the
semiclassical loop expansion in powers of ~. So here we reinstate the ~ param-
eter (thus far chosen to be 1 in universal units) and develop this expansion in
the first (one-loop) order linear in the Planck constant.

Operator realization of constraints

The first thing to do is to find the operator realization of constraints Ĥµ and

structure functions Ûλµν that would satisfy the quantum algebra (7.49) with the
operators of structure functions standing to the left of the constraints (with
the Planck constant reinstated the right-hand side of these algebraic relations
should be multiplied by ~). Remarkably, in the approximation linear in ~ there
exists in a closed form the following solution to this problem – the operators are
given by the Weyl (symmetric in q̂ and p̂) ordering of the following expressions
[206, 209]:

Ĥµ = NW

{
Hµ(q̂, p̂) +

i~
2
Uνµν(q̂, p̂) +O(~2)

}
, (7.105)

Ûλµν = NW

{
Uλµν(q̂, p̂)− i~

2
Uλσµνσ(q̂, p̂) +O(~2)

}
. (7.106)

Here NW is a symbol of Weyl ordering, and these algorithms are true for a
generic theory subject to first class constraints having at the classical level
the hierarchy of structure functions of the Poisson bracket algebra beginning
with Hµ(q, p), Uλµν(q, p), Uλσµνω(q, p), ..., as mentioned above higher order struc-
ture functions following from the Jacobi identities applied to multiple commuta-
tors of (7.49) with Ĥσ [214, 215, 219]. In Einstein gravity theory, of course, Uλµν
is p-independent and Uλσµνω ≡ 0. Note a nontrivial anti-Hermitian part of the
constraint operator generated by the trace of the structure constant, which is
compatible with the Hermiticity properties of the BFV operators (7.63) relative
to the auxiliary inner product (7.53) in the space of Ψ(q).

A similar algorithm holds for the physical observables – functions OI(q, p) on
the phase space which are classically gauge invariant in a weak sense, that
is commuting with classical constraints modulo the constraints themselves,
{OI , Hµ} = V νI µHν . They read [209]

ÔI = NW

{
OI +

i~
2
V λI λ +O(~2)

}
, (7.107)

V̂ νI µ = NW

{
V νI µ −

i~
2
V νσI µσ +O(~2)

}
. (7.108)
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This operator realization applies, in particular, to Ĥ0 and V̂ νµ ≡ V̂ ν0µ of Eq.(7.49)
in theories with a nonvanishing Hamiltonian H0(q, p).9

Semiclassical physical states

Semiclassical wave functions are characterized by the Hamilton-Jacobi function
S(q) and pre-exponential factor P (q) expandable in ~-series beginning with the
one-loop order O(~0):

Ψ(q) = P (q) exp

[
i

~
S(q)

]
. (7.109)

The general semiclassical solution of quantum constraints (7.99) with operators
(7.105) was found in [205, 206, 208] in the form of the two-point kernel U(q, q′)
“propagating” the initial data from q′ throughout the space of q

U(q, q′) = P (q, q′) exp

[
i

~
S(q, q′)

]
. (7.110)

In both expressions (7.109) and (7.110) the phase in the exponential satisfies the
Hamilton-Jacobi equation (2.44), while the one-loop pre-exponential factor is
subject to continuity type equation originating from the full quantum constraint
in the approximation linear in ~ [205, 206, 209]:

∂

∂qi
(∇iµP 2) = UλµλP

2, (7.111)

∇iµ ≡
∂Hµ

∂pi

∣∣∣∣
p = ∂S/∂q

. (7.112)

Note a nontrivial right-hand side in the “continuity” equation, generated by the
anti-Hermitian part of Ĥµ.

For a two-point kernel the Hamilton-Jacobi function coincides with the prin-
cipal Hamilton function S(q, q′) (action on the extremal joining points q and
q′) and the solution of the continuity equation can be found as a generalization
of the Pauli-Van Vleck-Morette ansatz for the one-loop pre-exponential factor
[224, 208] of the Schrödinger propagator. This generalization is nothing but a
Faddeev-Popov gauge-fixing [225] procedure for a matrix of mixed second-order
derivatives of the principal Hamilton function:

Sik′ =
∂2S(q, q′)

∂qi ∂qk′
, (7.113)

which is degenerate in virtue of the Hamilton-Jacobi equations (2.44) giving
rise to the left zero-value eigenvectors (7.112) and analogous right zero-vectors

9If the observables satisfy the Poisson algebra {OI ,OJ} = ULIJOL+UλIJHλ, ULIJ = const,

the above expressions are also modified by the trace of structure constants ULIL [209].
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[205, 206]:

∇iµSik′ = 0, Sik′∇k
′

ν = 0, ∇k
′

ν ≡
∂Hν(q′, p′)

∂p′k

∣∣∣∣
p′ = −∂S/∂q′

. (7.114)

The pre-exponential factor reads

P =

[
detFik′

J(q)J(q′) det cµν

]1/2

, (7.115)

where Fik′ is a nondegenerate matrix of the initial action Hessian (7.113) sup-
plied with a gauge-breaking term

Fik′ = Sik′ + χµi cµνχ
ν
k′ , (7.116)

and J(q) and J(q′) are the Faddeev-Popov “ghost” determinants [225] com-
pensating for the inclusion of this term. They are constructed with the aid of
two sets of arbitrary covectors (χµi , χ

ν
k′) (“gauge” conditions) satisfying the only

requirement of the nondegeneracy of their ghost operators [205, 208, 206]:

Jµν (q) = χµi ∇
i
ν , J(q) ≡ detJµν (q) 6= 0,

Jµν (q′) = χµi′∇
i′

ν , J(q′) ≡ detJµν (q′) 6= 0. (7.117)

The invertible gauge-fixing matrix cµν and its determinant are the last ingredi-
ents of the generalized Pauli-Van Vleck-Morette ansatz (7.115).

Reduction to the physical sector

The interpretation of the semiclassical state (7.110), (7.115) is rather trans-
parent in the physical sector of the theory [205, 206, 208]. The sector explic-
itly arises after the reduction to physical variables by disentangling them from
the original phase space of (qi, pi) in a unitary gauge. Such a reduction in
[205, 206, 208] was given for a special type of gauge conditions imposed only
on phase space coordinates qi, χµ(q) = 0. These coordinate gauge conditions
determine the embedding of the (n−m)-dimensional space Σ of physical coor-
dinates directly into the space of original coordinates qi – superspace. This fact
strongly simplifies the reduction of the semiclassical kernel (7.110), (7.115) to
the physical sector, because this reduction in the main boils down to the embed-
ding of the arguments of U(q, q′) into the physical subspace Σ. The geometry of
this embedding, considered in much detail in [208], can be better described in
special coordinates on superspace q̄i = (ξA, θµ), in which gA, A = 1, ...n −m,
serve as intrinsic coordinates on Σ (physical configuration coordinates), and θµ

is determined by gauge conditions:

qi → q̄i = (gA, θµ), qi = ei(gA, θµ), θµ = χµ(q). (7.118)
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The equation of the surface Σ in the new coordinates is θµ = 0, so that its
embedding equations coincide with the above reparametrization equations at
θµ = 0, ei(g) = ei(g, 0)

Σ : qi = ei(g), χµ(ei(g)) ≡ 0. (7.119)

The relation between the integration measures on superspace dq = dnq and on
Σ, dg = dn−mg,

dg = dq δ(χ)M, δ(χ) =
∏
µ

δ
(
χµ(q)

)
, M = (det[eiA, e

i
µ])−1, (7.120)

involves the Jacobian of this reparametrization, built of the basis of vectors
tangential and normal to Σ:

eiA =
∂ei

∂gA
, eiµ =

∂ei

∂θµ
. (7.121)

Note that m covectors normal to the surface can be chosen as gradients of gauge
conditions

χµi =
∂χµ

∂qi
, χµi e

i
ν = δµν , (7.122)

that can be identified with auxiliary covectors participating in the algorithm
for the pre-exponential factor (7.115). With this identification the Faddeev-
Popov operator Jµν (q, ∂S/∂q) coincides with the operator Jµν (q) of this algo-
rithm (which explains the use of the same notation).

On the same footing with (eiA, e
i
µ) as a full local basis one can also choose the

set (eiA,∇iµ) with vectors ∇iµ transversal to Σ given by eq.(7.112). The normal

vectors of the first basis when expanded in the new basis, eiµ = J−1 ν
µ∇iν+ΩAµ e

i
A,

have one expansion coefficient always determined by the inverse of the Faddeev-
Popov matrix J−1 ν

µ and, thus, independent of the particular parametrization of
Σ by internal coordinates. The second coefficient is less universal and depends
on a particular choice of this parametrization. Missing information about ΩAµ
does not prevent, however, from finding the relation between the determinants
of matrices of the old and new bases:

det [eiA, ∇iµ] =
J

M
. (7.123)

The reduction to physical sector in coordinate gauges follows after identifying
gA with the physical coordinates. The corresponding conjugated momenta pA
can be found from the transformation of the symplectic form restricted to the
physical subspace (7.119)∫

dt piq̇
i =

∫
dt

(
pie

i
Aġ

A + pi
∂ei(g, t)

∂t

)
, (7.124)

pA = pie
i
A, (7.125)



156 QUANTIZATION OF GRAVITY

as projections of the original momentum to the tangential components of the
basis (7.121). The normal projections of pi should be found from the constraints
Hµ(q, p) = 0, the local uniqueness of their solution being granted by the nonde-
generacy of the Faddeev-Popov determinant. Together with (7.119) this solution
yields all the original phase space variables (qi, pi) as known functions of the
physical degrees of freedom (gA, pA). The original action (2.124) reduced to
physical sector (that is to the subspace of constraints and gauge conditions)
acquires the usual canonical form with the physical Hamiltonian contributed
by the second term of (7.124) and H0(q, p) when the latter is nonvanishing.
Note that generically, especially for systems with H0(q, p) = 0, the canonical
gauge conditions should explicitly depend on time, χµ(q) = χµ(q, t), in order
to generate the dynamical evolution in reduced phase space theory [208, 206].
Therefore, the reduced symplectic form generates a nontrivial contribution to
the physical Hamiltonian, proportional to the time derivative of the embedding
functions (7.119) explicitly depending on t, qi = ei(gA, t). The total physical
Hamiltonian then takes the form

Hphys(g, π) =

[
H0(q, p)− pi

∂ei(g, t)

∂t

]
q=q(g,π), p=p(g,π)

, (7.126)

where we retain for the sake of generality also the nonzero Hamiltonian H0(q, p).
Canonical quantization of such a classical system runs as usual along the lines

of a particular representation and operator realization in the Hilbert space of
the theory. In the one-loop (linear in ~) approximation with the Weyl ordering of
the above Hamiltonian this quantization is basically exhausted by the unitary
evolution kernel U(t, g|t′, g′) of the Schrödinger equation. In the coordinate
representation it is given by the well-known Pauli-Van Vleck-Morette ansatz
[224]

Uphys(t, g|t′, g′) ≡
[
det

i

2π~
∂2S(t, g|t′, g′)
∂gA ∂gB′

]1/2

e
i
~S(t, g|t′, g′)

, (7.127)

where the principal Hamilton function of the physical variables S(t, g|t′, g′) is a
classical action evaluated at the classical extremal passing the points g′ and g
respectively at initial t′ and final t moments of time. The pre-exponential factor
here is built of Van Vleck determinant and guarantees in the approximation
linear in ~ the unitarity of the Schrödinger evolution of the physical states
Ψ(t, g)

Ψphys(t, g) =

∫
dg′ Uphys(t, g|t′, g′)Ψphys(t

′, g′) (7.128)

in the Hilbert space with a simple L2 inner product (denoted by round brackets)

(Ψ ′phys|Ψphys) ≡
∫
dg Ψ ′

∗
phys(g)Ψphys(g). (7.129)
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The unitary map between the reduced phase space quantization of the above
type and the Dirac quantization of Sects. 7.2.–7.4. consists in a special relation
between the two-point kernel (7.110) with prefactor (7.115) and the Schrödinger
evolution operator (7.127) [205, 206, 208]. This relation is based on the equality
of the principal Hamilton functions in the original constrained theory and the
reduced one and its corollary – the relation between their Van Vleck matrices

S(t, g|t′, g′) = S(q, q′)
∣∣∣
q=e(g,t), q′=e(g′,t′)

, (7.130)

Sik′e
i
Ae

k′

B′ =
∂2S(t, g|t′, g′)
∂gA ∂gB′

. (7.131)

Decomposing the gauge-fixed matrix (7.116) in the basis of vectors (eiA,∇iµ)
and using (7.123) one then easily finds the needed relation [205, 206, 208]

Uphys(t, g|t′, g′)

=

(
J

M

)1/2

U(q, q′)

(
J ′

M′

)1/2
∣∣∣∣∣
q=e(g,t), q′=e(g′,t′)

+O(~). (7.132)

This is the semiclassical (one-loop) implementation of the relation (7.11) for-
mulated above.

This relation implies that the kernel U(q, q′) similarly to the Schrödinger
propagator Uphys(t, g|t′, g′) can be regarded as a propagator of the Dirac wave
function Ψ(q) in superspace. Indeed, introducing the following map between
Ψ(q) and Ψphys(t, g)

Ψphys(g, t) =

(
J

M

)1/2

Ψ(q)

∣∣∣∣∣
q=e(g,t)

+O(~) (7.133)

and taking into account the relation (7.120) between the integration measures
on superspace and the physical space Σ, one finds that the propagation law
(7.128) in g-space can be regarded as a projection onto Σ(t) of the following
propagation of the Dirac wave function Ψ(q) from the initial Cauchy surface
Σ(t′) in q-space to the entire superspace:

Ψ(q) =

∫
dq′ U(q, q′) δ(χ(q′, t′))J

(
q′,−∂S(q, q′)

∂q′

)
Ψ(q′) +O(~). (7.134)

Here the actual integration runs over the initial physical space Σ(t′). However,
the integration measure involves not just local quantities at this surface, but also
the normal derivatives of the kernel (or the wave function Ψ(q′) itself) arising in
the one-loop approximation as a Hamilton-Jacobi argument p = −∂S(q, q′)/∂q′

of J(q, p).
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Semiclassical physical inner product: Hermiticity
and gauge independence

The unitary map from the Dirac quantization to the reduced phase space quan-
tization (7.133) suggests that the simple inner product (7.129) of the former
quantization scheme induces a correct physical product in the latter one

〈Ψ ′ |Ψ 〉phys = (Ψ ′phys|Ψphys) (7.135)

on account of the relation (7.133) and the change of integration variables
(7.122). The result for semiclassical states of the form (7.109) looks exactly
like (7.81) [204, 205, 206], where the delta-function of gauge conditions deter-
mines the (n−m)-dimensional physical subspace Σ embedded in superspace and
J(q, ∂S/∂q) is a corresponding Faddeev-Popov determinant with the Hamilton-
Jacobi value of the momentum10.

Thus, in the one-loop approximation we have a complete agreement between
the reduced phase space (ADM) quantization and the BFV induced Dirac quan-
tization method of Sect.7.4.. The same can be done for the semiclassical solution
of quantum Dirac constraints. While here the two-point prefactor (7.115) was
obtained by directly solving the quantum Dirac constraint, the same can be
done by calculating in the one-loop approximation the path integral (7.102) in
the relativistic gauge of the form Ṅµ − χµ(q, p) = 0. This was explicitly done
in [226, 227] with the same result (7.115).

It remains to discuss the Hermiticity and gauge dependence properties of rel-
evant observable matrix elements relative to this physical inner product. When
it is rewritten in terms of the auxiliary inner product with the delta-function
type operator measure

〈Ψ ′ |Ψ 〉phys = 〈Ψ ′| Ĵδ(χ̂) |Ψ 〉+O(~), (7.136)

the Hermiticity of the observable (7.107) with a real OI(q, p) immediately fol-
lows from the relation [209] 〈Ψ ′ | [ ÔI , Ĵ δ(χ̂) ] − i~V λI λ |Ψ 〉 = O(~2). Thus, ÔI
is Hermitian with respect to 〈 ... | ... 〉phys, even though it has an anti-Hermitian

part, Ô†I = ÔI − i~V λI λ +O(~2) with respect to 〈 ... | ... 〉.
The gauge independence of the physical inner product is based, as shown in

[206, 207], on the fact that it can be rewritten as the integral over (n − m)-
dimensional surface Σ of a certain (n−m)-form which is closed in virtue of the

10In eq.(7.81) the product of two semiclassical wave functions Ψ ′∗Ψ1 = P ′∗P exp[i(S′ −
S)/~] involves two different Hamilton-Jacobi functions, so that it seems ambiguous on which

Lagrangian manifold (p = ∂S/∂q or p = ∂S′/∂q) the relevant momentum argument of J(q, p)

should be constructed. One should remember, however, that in semiclassical expansion the
integral is calculated by the stationary phase method in which a dominant contribution comes

from the stationary point satisfying ∂S1/∂q = ∂S2/∂q. This makes these Lagrangian surfaces

to coincide in the leading order, their difference being treated perturbatively in ~.



7.5. Semiclassical approximation 159

Dirac constraints on physical states

〈Ψ ′ |Ψ 〉phys =

∫
Σ

ω(n−m), dω(n−m) = 0, (7.137)

ω(n−m) =
dqi1 ∧ ... ∧ dqin−m

(n−m)!
εi1...inΨ

′∗∇in−m+1

1 ...∇inm Ψ. (7.138)

It follows then from the Stokes theorem that this integral is independent of the
choice of Σ in the class of surfaces the cobordism between which is enforced by
some regular (n−m+ 1)-dimensional subspace of the q-space.

The closure of ω(n−m) is a corollary of the approximate continuity equation
for Ψ ′∗Ψ , ∂(∇iµΨ ′∗Ψ)/∂qi = UλµλΨ

′∗Ψ + O(~), where the correction O(~) is
due to the difference between the momentum arguments related to different
Hamilton-Jacobi functions p′ = ∂S′/∂q and p = ∂S/∂q, which goes beyond the
one-loop approximation (see the footnote 9).

A similar gauge independence property holds for the matrix elements of phys-
ical observables, which only differ from (7.137) by the presence of OI(q, ∂S/∂q)
in the integrand, and follows from gauge invariance of ÔI . Thus, as it should
have been expected from the theory of gauge fields and BFV formalism the
gauge independence of the physical matrix elements or expectation values of
observables follows from the gauge invariance of the latter. This is true not
only at the formal path-integral quantization level, but also in the operator
Dirac quantization scheme.

The exterior form representation (7.137)-(7.138) of the physical inner product
gives a correct understanding of the Wheeler-DeWitt conserved current (7.54) –
this is a flux of the (n−m)-form through the (n−m)-dimensional surface Σ in q-
space, defined by (7.119). In fact, this surface is a coordinate physical subspace
embedded into the coordinate configuration space of q. The codimension of this
surface is the range of the index µ enumerating the constraints – m, therefore
the flux conservation through such surface requires not one, but rather m conti-
nuity type equations. The analogy with the Klei-Gordon type current becomes
stronger if we notice that each ∇iµ factor in the definition (7.138) of ω(n−m) can
be represented as a result of action of the Wronskian type operator

1

2

(
∂Hµ

∂pi

∣∣∣∣
p=
−→
~∂/i∂q

− ∂Hµ

∂pi

∣∣∣∣
p=
←−
~∂/i∂q

)
+O(~) (7.139)

on the wave functions Ψ and Ψ ′∗, with ~
−→
∂ /i∂q acting to the right on the factor Ψ

and ~
←−
∂ /i∂q – to the left on the factor Ψ ′∗ [207]. For the Hamiltonian constraint

Hµ with µ = (⊥,x) this is a first order differential Wronskian operator,

~
i

(
Gabcd(x)

−→
δ

δgcd(x)
−

←−
δ

δgcd(x)
Gabcd(x)

)
. (7.140)

The product of m = 4×∞3 such operator factors in (7.138) is what distinguishes
Einstein field theory from the relativistic quantum mechanics of a single Klein-
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Gordon equation corresponding to m = 1. Unfortunately, this analogy has not
yet been extended beyond linear order in ~ to get exact conservation law for a
flux of many Klein-Gordon type equations subject to a commutator involution
of the Dirac constraints type.

In a spatially closed gravitational system with H0 = 0 a time evolution
arises due to the choice of explicitly time dependent gauge conditions, which
according to (7.119) implies the motion of this physical subspace in super-
space of 3-metrics q. The one-parameter family of such surfaces Σ(t) induces
the nonvanishing values of lapse and shift functions Nµ = −J−1µ

ν ∂χµ/∂t (cf.
Eq.(3.15)), which according to (2.63) determine the “velocity” of the motion of
the 3-dimensional spatial section in spacetime. This is the way how a “frozen”
formalism becomes evolutionary due to the imposed time variation of gauge con-
ditions. Such time evolution enters the construction of quantum averages via
explicit time dependence of the operator measure in the physical inner product,
M̂t = δ(χ(q, t))Ĵt +O(~), Ĵt ≡ det[χµ(q, t), Hν(q, p̂) ]/i~. As a result, quantum
averages of generic operators become t-dependent even though the Wheeler-
DeWitt wave function Ψ(q) is constant in time. The nontrivial conservation in
time of such averages for matrix elements between different Dirac states is the
manifestation of unitarity that was checked above both at the reduced phase
space quantization level and in the Dirac-Wheeler-DeWitt formalism.

7.6. Problems and prospects of quantum gravity
and cosmology

Thus, the reduced phase space (ADM) quantization and quantum geometrody-
namics – Dirac-Wheeler-DeWitt quantization, the latter generated by the trun-
cation of the operator BFV formalism, form equivalent theories. The picture of
this equivalence still suffers from a number of inconsistencies and unsolved is-
sues. To begin with, unitary equivalence of these two schemes (7.133) is likely to
be restricted to the one-loop approximation for semiclassical states. Apparently
the most consistent and universal technique is the operator BFV/BRST quan-
tization. Due to embedding of the theory into extended relativistic phase space
of gauge and ghost fields it has the most efficient tools and a lot of gauge fixing
flexibility for the analysis of gauge invariance properties, gauge dependence is-
sues, etc. In this regard, the efficiency of the Dirac quantum geometrodynamical
approach is much lower, and for the ADM quantization it is nearly absent at
all in view of the necessity to solve explicitly complicated nonlinear constraint
equations and to deal with spacetime nonlocality.

The problem of the choice of a good gauge-fixing procedure is another funda-
mental issue in quantum geometrodynamics. Note that, similarly to the Wron-
skian inner product of the Klein-Gordon equation, the flux of the current form
(7.137)-(7.138) is not positive definite. At the classical level this is equivalent
to the statement that the determinant factor J(q, p) = detJµν (q, p) generally is
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not positive definite either. But the degeneration of the Faddeev-Popov func-
tional matrix Jµν (q, p) means the breakdown of the gauge fixing procedure (the
analogue of the Gribov copies problem in Yang-Mills gauge theories [228, 229]).
The canonical gauges χµ(q, p) that would avoid this problem are, to the best
of our knowledge, not known (the discussion of Gribov copies in cosmological
context can be found in [230]). This would motivate in analogy with the sec-
ond quantization of Klein-Gordon equation and secondary quantized string field
theory the so called third quantization of gravity targeting once very popular
speculations on the physics of multiple baby universes [231].

Another difficulty in quantum geometrodynamics is lacking manifest space-
time covariance which is critical for the studies of ultraviolet divergences. The
reader might have noticed that the superspace dimensionality and the number
of spacetime diffeomorphisms was silently denoted by n and m which in pure
4-dimensional gravity are divergent quantities n = 6 ×∞3 and m = 4 ×∞3,
so that majority of constructions underlying the Wheeler-DeWitt equation are
purely formal. Commutators of phase space coordinates and momenta in lo-
cal quantum constraint are divergent ∼ δ(3)(0), traces of structure functions
also represented pure divergences Uνµν ∼ δ(3)(0), etc. All these expressions re-
quire regularization and renormalization, which is hard to render covariant in
manifestly noncovariant formalism.

The path integral method which is a central point of the BFV quantization
has an efficient means to overcome this difficulty – integration over phase space
momenta converts the path integral to the Lagrangian form [213, 46] which in
a special class of background covariant gauge conditions allows one to enjoy all
the advantages of the manifestly covariant treatment. A covariant regulariza-
tion allows one to minimize the violation of classical symmetries of the theory
at the quantum level. In this respect, the path integral representation is what
one needs – calculating this integral by the technique of covariantly regularized
Feynman graphs is a right alternative to the attempts of directly solving the
Wheeler-DeWitt equation. This really denies disparaging remarks on this equa-
tion, mentioned in Preface, as an absolutely useless tool in quantum gravity
and explains its first principle founding nature. Like Schrödinger equation in
quantum field theory, it lies at the foundation of the theory, though in concrete
applications it gives way to a more efficient but a derivative tool – path integral
method.

The realization of this strategy for the two point kernel (7.102) gives it as
a projector onto the space of solutions of Wheeler-DeWitt equations, acting in
superspace of 3-metrics and matter fields qi = (gab(x), φ(x)).

U [ g+
ab(x), ϕ+(x) | g−ab(x), ϕ−(x) ] =

∫
D[ gµν , φ ] eiS[ gµν ,φ ]. (7.141)

Here S[ gµν , φ ] is the covariant action of the gravitational and matter fields, the
details of Faddeev-Popov’s gauge fixing procedure are hidden in the measure
D[ gµν , φ ] and the integration runs over gravitational and matter spacetime
histories qi(t), Nµ(t) = (gµν(x), φ(x)), x = (t,x), interpolating between config-
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urations at initial and final spatial hypersurfaces (labeled by t±),

gab(x, t±) = g±ab(x), φ(x, t±) = ϕ±(x). (7.142)

Depending on the choice of these configurations and possible analytic con-
tinuation of the time integration contour between t− and t+ into the complex
plane (Euclidean time or “Euclidean quantum gravity”) this path integral gen-
erates various prescriptions for a cosmological quantum state. These prescrip-
tions include, in particular, the Hartle-Hawking no-boundary [232, 233] and
the tunneling [234, 235, 236, 237] quantum states of the Universe, which are
usually associated with creation of the Universe from “Nothing”. The last two
decades, with the advent of precision cosmology, are characterized by a growing
interest in cosmological inflation theory that is widely recognized as underlying
the observable large scale structure of the Universe. This explains the interest
in these two quantum states as they, with this or that level of success, describe
the origin of inflationary Universe.

Even more appealing sounds a recently suggested construction of the initial
cosmological state as a microcanonical density matrix [238, 239]. This density
matrix is proposed as a projector on all possible solutions of the Wheeler-
DeWitt equation (7.141). The motivation for such a proposal is the principle
of Occam razor – minimum set of assumptions, because this is an ultimate
equipartition in the full set of states of the theory — “Sum over Everything”
[239]. Creation of the Universe from “Everything” is conceptually more appeal-
ing than creation from “Nothing”, because the democracy of the equipartition
better fits the principle of Occam’s razor than the selection of a concrete state.

The statistical sum of this microcanonical state is the trace of Û over the
physical configuration space, which has a representation of the covariant path
integral over periodic in time histories of gravitational and matter fields [210]

Z = trphysÛ ≡
∫
dq M̂ U(q, q′)

∣∣
q′=q

=

∫
periodic

D[ gµν , φ ] eiS[ gµν ,φ ]. (7.143)

Semiclassical calculation of this integral by the saddle point method runs in
a manifestly covariant formalism which admits covariant UV renormalization
underlying nontrivial quantum scaling behavior which in its turn is generated
by a conformal anomaly of matter fields [238, 239].

This leads to numerous new physical effects in the theory of very early quan-
tum Universe, which are impossible within the no-boundary and tunneling pre-
scriptions. These effects culminate in the prediction of a new type of inflationary
scenario with a bounded sub-Planckian energy scale [238, 241], which incorpo-
rates models of the Starobinsky R2-inflation and Higgs inflation [240]. These
models give, as is widely recognized, the best explanation of the observable cos-
mic microwave background (CMB) data and even establish intriguing relation
between the basic parameters of this data and the mass value of the recently
discovered Higgs boson [242, 243]. There is a lot more in store for us, which is
ultimately based on the Dirac-Wheeler-DeWitt quantum geometrodynamics!



Appendices

A1. Geometry of manifolds

This appendix contains a brief summary of definitions of the basic concepts of
the differential geometry of manifolds used in the main text. The details and
proofs of facts collected here can be found in [2, 3, 4, 24].

Manifold

Let M be a topological Hausdorff space with a countable base (the Hausdorff
property means the separability of points in the space M in the following sense:
for any p, q ∈M , there are open neighbourhoods Up 3 p and Vq 3 q, such that
Up ∩ Vq = ∅). The space M is called an n-dimensional smooth manifold, if it
is locally homeomorphic to Rn, i.e., 1) for each open set Ui (the collection of
which covers the whole space ∪

i
Ui = M), a homeomorphism ϕi : Ui → Rn to a

region of Rn is defined, which means the introduction of the local coordinates
x1(p), · · · , xn(p) for the points p ∈ Ui; 2) in the intersections Ui ∩ Uj 6= ∅, the
composition of maps ϕj◦ϕ −1

i : Rn → Rn is defined which is a smooth function
of its arguments. For simplicity, the smoothness is understood everywhere as
an infinite differentiability. The pair (Ui, ϕi) is called a chart, and the complete
set of consistent charts (in the sense of the smoothness of transition functions
in the intersections) is called an atlas of the manifold M .

The local properties of manifolds are clarified when studying the tangent
spaces. One can define the tangent vector Xp at the point p ∈ M as the lin-
ear differential operator acting on the set of smooth functions defined on the
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manifold M in the neighbourhood of the point p, that satisfies the condition
X(fg) = X(f)g(p) + f(p)X(g),∀f, g. The set TpM of all tangent vectors at
the point p ∈M constitutes an n-dimensional linear vector space and is called
a tangent space to M at a point p. The operators (∂µ)p = (∂/∂xµ)p [where

xµ, µ = 1, · · · , n, are the coordinates in the local chart and (∂µ)pf = (∂µf)p]
constitute the basis in TpM , which is called the coordinate basis. Any vector
Xp is represented by the linear combination X = Xµ(p)∂µ.

Let M1 and M2 be the smooth manifolds. The mapping f : M1 →M2 is called
a differentiable mapping, if in any local charts (Ui, ϕi) in M1 and (Vj , ψj) in
M2 the composition ψj◦f◦ϕi−1 is a differentiable function. The differentiable
mapping f determines the mapping of the respective tangent spaces: a tangent
vector Xp at the point p ∈ M1 is mapped to the vector Yp = f∗(Xp) at the
point q = f(p) ∈ M2 in accordance with the rule f∗ (X) (g) = X(g◦f) for any
smooth function g: M2 → R. The map f∗ is called a differential of f ; this map
is also often denoted as df .

We say that the smooth vector field X is defined on M , if each point p ∈M
is mapped to the vector Xp ∈ TpM and for any smooth function f on M
Xp (f) = (Xf)(p) is a smooth function.

The space of linear forms Tp
∗M dual to TpM is called a cotangent space at

a point p ∈ M . In the local coordinates {xµ} in the neighbourhood of p, the
basis in Tp

∗M can be defined by the set of differentials (dx1, dx2, . . . , dxn),
the latter basis is dual to the coordinate frame basis {∂µ}.

Using TpM and Tp
∗M , one can consider arbitrary rank tensors as the elements

of the tensor products TpM ⊗ · · · ⊗ TpM ⊗ Tp∗M ⊗ · · · ⊗ Tp∗M .
In the local chart {xµ}, any smooth tensor field T covariant of the rank k

and contravariant of the rank l is defined by its components Tµ1...µk
ν1...νl

(x) – the
smooth functions of coordinates

T = Tµ1...µk
ν1...νl

∂µ1
⊗ · · · ⊗ ∂µk ⊗ dxν1 ⊗ · · · ⊗ dxνl .

When changing the coordinates xµ → yµ(x), the tensor components are trans-
formed as

T ′
µ1...µk
ν1...νl

= Tα1...αk
β1...βl

∂yµ1

∂xα1
. . .

∂yµk

∂xαk
∂xβ1

∂yν1
. . .

∂xβl

∂yνl
,

in accordance with the transformations of bases of the tangent and cotangent
spaces

∂

∂yµ
=
∂xν

∂yµ
∂

∂xν
, dyµ =

∂yµ

∂xν
dxν .

Differential forms

The elements of the cotangent space ω ∈ Tp∗M , defined at each point p ∈ M ,
are called a smooth differential 1-form, if in the local coordinates {xµ} the
decomposition coefficients of the form ω with respect to the basis of Tp

∗M ,
ω = ωµ (x) dxµ are differentiable functions.
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The exterior product of spaces Tp
∗M is defined as a totally antisymmetrized

tensor product

Tp
∗M ∧ · · · ∧ Tp∗M = altern(Tp

∗M ⊗ · · · ⊗ Tp∗M).

The elements of space Λk(Tp
∗M) – of k-th exterior power Tp

∗M – are the
completely antisymmetric covariant tensors

ω =
1

k!
ωµ1...µk(x) dxµ1 ∧ · · · ∧ dxµk , ωµ1...µk = ω[µ1...µk].

If at each point p ∈ M , the element from Λk(Tp
∗M) is defined such that the

coefficients ωµ1...µk(x) are smooth functions, we say that an exterior differential
form of rank k is defined on the manifold M . The space of all k-forms on Mn

is denoted by Λk (it is clear that Λk = ∅, if k > n = dimM ). The direct
sum Λ∗ (M) = Λ0 ⊕Λ1 ⊕ . . .Λn is a linear space (with an obvious definition of
the sum and multiplication) and the introduction of the operation of exterior
product in it converts Λ∗ (M) into an algebra. In the local coordinates {xµ},
the exterior product of a k-form

ω =
1

k!
ωµ1...µk dx

µ1 ∧ · · · ∧ dxµk

and an l-form

ϕ =
1

l!
ϕµ1...µi dx

µ1 ∧ · · · ∧ dxµl

is defined as a (k + l)-form σ = ω ∧ ϕ,

σ =
1

(k + l)!
σµ1...µk+ldx

µ1 ∧ · · · ∧ dxµk+l

where

σµ1...µk+l =
(k + l)!

k!l!
ω[µ1...µkϕµk+1...µk+l].

The exterior product is non-commutative:

(k)
ω ∧

(k)
ϕ= (−1)kl

(l)
ϕ ∧

(k)
ω .

For a differentiable mapping f : M1 → M2 along with its differential f∗ :
TM1 → TM2, the dual mapping of forms (which called a pull-back map) is
always determined: the form ϕ on M2 is mapped to the form ω = f∗ϕ on M1,
so that f∗ϕ(X1, . . . , Xk) = ϕ(f∗X1, . . . , f∗Xk), where X1, . . . , Xk ∈ TpM1.

The operation of exterior differentiation is most important notion of the ex-
terior algebra. The mapping d : Λk → Λk+1 is called the exterior differential, if
it has the following properties: the Leibniz rule d(ωl∧ϕ) = dω∧ϕ+(−1)l ω∧dϕ
with ω ∈ Λl; for 0-forms (functions on M) d coincides with the differential df ;
and d is nilpotent, d2 = 0. In the local coordinates

d
(k)
ω =

1

k!
∂[µ1

ωµ2...µk+1] dx
µ1 ∧ dxµ2 ∧ · · · ∧ dxµk+1 .
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If M is a Riemannian space with the metric gµν(x) of the signature p, then
the operation of dualization is defined on the exterior algebra, or the Hodge
(“star”) operator ∗ : Λk → Λn−k. In the local coordinates, this mapping has
the following form:

∗
(k)
ω =

1

(n− k)!k!
εµ1...µn−kν1...νkω

ν1...νkdxµ1 ∧ · · · ∧ dxµn−k ,

where εµ1...µn is totally antisymmetric Levi-Civita tensor density. From the
definition, we have a property

∗∗
(k)
ω = (−1)k(n−k)+p (k)

ω .

The theory of integration of exterior forms on manifolds can be studied in
[3, 4]. Here, we will confine ourselves to the local definition only. Every smooth k-
form ω on the manifold Mn defines on any k-dimensional hypersurface Nk ⊂Mn

a k-form γ∗ω, where γ : Nk →Mn is the relevant embedding map. If the local
coordinates (y1 . . . yk) are chosen in a region U ⊂ Nk, the integral of the
form ω over U is defined as the number

∫
U

(γ∗ω)12...kdy
1 . . . dyk. This number

is denoted as
∫
U
ω. The invariant integral over the entire k-hypersurface

∫
N
ω

is then determined using the natural matching of the integrals over the charts
covering Nk.

Bundles

The notion of a bundle space is very important in physics, because it formalizes
the idea of an “internal space” of states in which a physical system can be in
each point of the spacetime.

Let Vm be an m-dimensional vector space, and the action of some group G :
G×V m → V m is defined on it. Then, the trivial vector bundle over M is called
a direct product V m ×M = E, where the action of the group G : G× E → E
is naturally defined: u = (v, x) ∈ E is mapped into gu = (gv, x). The manifold
M is called a base of bundle E, V m is a typical fiber of a bundle, and G is a
structural group. The generalization of this structure is a locally trivial bundle
E(M,V,G, π). By definition, this is an (m+n)-dimensional smooth manifold E
where the projection π : E → M is defined, and in addition there is a smooth
atlas, ∪

i
Ui = M , such that for any point x ∈ M there is a neighbourhood

Ui 3 x, the preimage of which π−1(Ui) is diffeomorphic to V × Ui (the local
triviality), and the corresponding diffeomorphisms ϕi : π−1(Ui) → V × Ui are
identical, i.e., for (v, x) ∈ V × Ui one has π◦ϕ−1

i (v, x) = x. In addition, in the
intersection regions Ui ∩ Uj 6= ∅, the diffeomorphisms are compatible in the
sense that ϕ−1

i ◦ϕj = g ∈ G determines an automorphism of the fiber V under
the action of the structural group G. If the smooth manifold V is a space of a
linear representation of the group G, i.e., it is an m-dimensional vector space,
the bundle E is called vector bundle.
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An example of the vector bundle is the 2n-dimensional manifold defined as
∪

x∈M
TxM = TM which is called a tangent bundle.

When the fiber coincides with the structural group V = G acting on itself by
right shifts, the bundle is called a principal one. It denoted by P (M,G). where
P is a bundle space, M is its base. In a certain sense, the notion of a principal
bundle generalizes the notion of the Lie group, since formally it is nothing but
the collection of the copies of the group G “numbered” by the points from M .
Its properties are described in details in [3]. Here we mention just one important
mathematical fact. It is known that the Lie algebra G generates an action on the
Lie group G: namely, every element a ∈ G generates a one-parametric subgroup
in G by means of the exponential map exp a. As a result, in the principal bundle
P (M,G) the right action of G on P induces a natural homomorphism of the
Lie algebra G into the Lie algebra of the vector fields on P : for a ∈ G the
corresponding induced vector field a∗ on P is called a fundamental vector field.
By construction, a∗ is tangent to the fiber, i.e., it is a vertical vector field,
π∗(a

∗) = 0.
Let the action of the group G be defined on a smooth manifold V . Then,

for the principal bundle P (M,G) one can introduce an associated bundle with
V as the typical fiber: E (M,V,G, P ) = (P × V )/G, where the factorization is
considered with respect to the equivalence relation defined on P × V by the
natural right action G, namely, (p, v) g =

(
Rgp, g

−1v
)
,∀p ∈ P, v ∈ V, g ∈ G.

The example of the principal bundle is the bundle of linear frames L(M)
with a structural group GL(4, R) (see Sec. 5.2.), and the tangent bundle can
be considered as an associated one with it.

The smooth mapping σ : M → E(M,V,G) such that π◦σ = idM is called the
cross-section of the bundle E. The cross-section of the principal bundle exists
only if P = M ×G is the trivial bundle [3, 4].

Let H be a subgroup of the group G and P̃ (M,H) is a principal bundle
over M with a structural group H. The mapping f : P̃ (M,H) → P (M,G) is
called the reduction of the structural group G to the subgroup H, if the induced
mapping f : M → M is identical, and f : H → G is a monomorphism. Then
the subbundle P̃ (M,H) is called the reduced bundle. One can prove that the
necessary and sufficient condition for the reduction of the structural group G
of the principal bundle P (M,G) to a closed subgroup H is the existence of a
cross-section of the bundle E(M,G/H,G, P ) associated with P with the typical
fiber G/H, [3].

Connection

The gauge field in the geometrical approach in the field theory is identified
with a connection in the bundle space. Let P (M,G) be a principal bundle. The
connection in P is a smooth mapping ρp of the tangent space to the base into
the tangent space to the bundle, ρp : TxM → TpP (with π (p) = x) such that
the horizontal subspace Hp = ρp(TxM) is invariant with respect to the action
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of the group G on P and π∗ ◦ ρp = id
TxM

. The smoothness is understood as
a smooth dependence of ρp on p ∈ P . Thus introduced connection defines the
unique partition of the tangent space TpP = Hp⊕Vp into the direct sum of the
horizontal Hp and the vertical Vp subspaces. The latter subspace Vp is formed
by the tangent vectors to the fiber, and therefore, it is isomorphic to the Lie
algebra of the group G. Observing this, one can give an equivalent definition
of a connection. We say that the connection is defined in the bundle P (M,G)
if a 1-form of ω with the values in the Lie algebra of the structural group G is
given on P , such that ω(a∗) = a and Rg

∗ω = g−1ωg for all a ∈ G and g ∈ G.
One can show that definition of the connection 1-form ω in P is equivalent to
the existence of a set of 1-forms ωi on the base space M , which are determined
for any i in the corresponding chart Ui (where {Ui} is an open covering of M)
by the local cross-sections σi : Ui → P , so that ωi = σ∗i ω. Other properties of
the connection are discussed in detail in [3, 4].

The gauge field strength coincides in the local coordinates with the compo-
nents of the curvature of connection in the principal bundle. The form of the
curvature R of a connection ω on P is 2-form with the values in the Lie algebra
of the structural group G, which is determined as exterior covariant differential
from ω:

R(X,Y ) = Dω(X,Y ) = dω(hX, hY ), X, Y ∈ TpP,

where h is a projection to the horizontal subspace Hp. The curvature satisfies
the structure equations [3, 4]

dω(X,Y ) = − 1

2
[ω(X), ω(Y )] +R(X,Y ), X, Y ∈ TpP.

Here the square bracket [ , ] denotes the Lie algebra commutator.
The definition of a connection ω determines the parallel transport of the

vectors in the bundle associated with P , as well as introduces the covariant
derivative in E(M,V,G, P ), [3].
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A2. Spinor analysis on an arbitrary manifold

Let us consider the spinor bundle, the typical fiber of which is a two-dimensional
complex vector space S2, the structural group is GL(2, C), and the base is a
spacetime M4. It is more convenient to work in the local chart, where the main
object of our investigation – the contravariant spinor of the 1st rank is a two-
component complex field

ξA =

ξ1(x)

ξ2(x)

 .

The spinor indices run the two values, A,B,C, · · · = 1, 2. When changing the
local basis, the spinor is transformed as

ξA
′

= LA
′

A ξ
A, LA

′

A ∈ GL(2, C).

As usual, the bilinear non-singular interior product (S2 × S2 → C) is in-
troduced in the space S2, which in local basis is set by antisymmetric matrix
[81, 82]

εAB =

(
0 1

−1 0

)
.

The elements of the dual spinor space – the covariant spinors (ξA in local basis)
are transformed under the action of L−1 ∈ GL(2, C). Raising and lowering of the
indices can be performed with the help of εAB and εAB , where εBAεBC = δAC .

In addition, we define the bundle with typical fiber S2 over M4, which is called
the conjugate spinor space. The elements of the fiber (S2)x over the point x in
the local chart are the complex-conjugate quantities to spinors from S2. They

are denoted by ΨȦ = (ΨA)
∗
, and they are transformed under the action of

the complex-conjugate matrix LȦḂ = (LAB)∗. In S2, the bilinear non-singular
antisymmetric interior product is also introduced in local basis by the matrix
εȦḂ = (εAB)∗.

Spinors of the higher ranks are defined as the elements of the tensor products
S2 ⊗ · · · ⊗ S2 ⊗ . . . S2 ⊗ . . . S2 and are transformed in an obvious way as the
products of the 2-spinors of the first rank.

The linear connection in the spinor bundle is defined by the corresponding
1-form with the values in the Lie algebra gl(2, C). For a local cross-section –
the spinor field ξ(x) – this introduces the coefficients of the local connection
ωµ(x) which under the change of the local basis are transformed according to
ωµ → ωµ

′ = LωµL
−1 +L∂µL

−1. Accordingly, the covariant derivative of spinor
fields is defined by

Dµ ξ
A
Ḃ = ∂µ ξ

A
Ḃ + ωACµ ξ

C
Ḃ − ω

Ḋ
Ḃµ ξ

A
Ḋ.

Such a general gl(2, C)-connection in the spinor bundle is not consistent with
the interior spinor product in the sense that

Dµ εAC = 2ω[AC]µ = ϕµ εAC ,



170 Appendices

ϕµ = ωAAµ is the trace of the coefficients of the spinor connection.
Until now, the properties of the spinor bundle were considered separately from

the geometry of the base space, since its own structure (the interior product,
connection, etc.) can be defined quite independently. However, developing a
consistent gauge approach to the gravitational field, we now will establish a
relation of the spinor structure with geometrical spacetime structures. This
issue is the most important one in the construction of the spinor analysis on an
arbitrary manifold.

Let us make use of the fact that there exists a fundamental isomorphism of the
space (S2⊗

H
S2)x (the index H means the Hermitization) at a point x ∈M4 and

the tangent space TxM4. For the typical fibers S2⊗
H
S2 and R4, this isomorphism

determines an arbitrary 4-vector as a linear combination of pairs ξAηḂ .
In the local chart, the aforementioned isomorphism is established with the

help of the fundamental spin-tensor objects (the generalized Pauli matrices)
gaȦB = − (gaȦB)† (the Latin indices a, b, c, · · · = 0, 1, 2, 3 refer to an arbitrary
Lorentz frame in TxM). The matrices gaAḂ satisfy the postulate

gaAḂgbCḂ = ηab δAC +
i

2
εabcdgc

AḂgdCḂ , (A2.1)

and are arbitrary in other respects. The generalized Pauli matrices can be chosen
at one’s convenience. We will use a particular representation:

g0AḂ = −i1, gkAḂ = −i σk, k = 1, 2, 3,

where 1 is the 2× 2 unit matrix, and σk are the standard 2× 2 Pauli matrices.
The important consequence of (A2.1) is the relation

g(a|AḂ|gb)CḂ = ηab δAC , (A2.2)

which provides a link between the world metric and the spinor interior product.
As usual, their consistency is achieved with the help of the translational gauge
gravitational field – the tetrads haµ, which introduce the world Pauli matrices
gµAḂ = hµag

a
AḂ , and hence obviously modifies (A2.1), (A2.2).

One can make the connections (Γabµ and ωABµ) compatible by imposing a
natural requirement of coincidence of the covariant derivative of a 4-vector with
respect to the connection Γ on M4 and the covariant derivative with respect to
ω of its spinor image under the canonical isomorphism. Then we postulate

∇µ gνAḂ =
1

2
Kµν

λgλ
AḂ , (A2.3)

which is consistent with (A2.2).
The equation (A2.3) is easily solved with respect to the spinor connection by

multiplying it by gνCḂ and using the property (A2.1):

ωABµ =
1

4
Γ[ab]µ

(−)

S
abA

B , (A2.4)
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where
(−)

S abA
B := g[a|AĊ|gb]BĊ . The spin-tensor is symmetric

(−)

S ab
AB =

(−)

S ab
BA

and anti-self-dual, ∗
(−)

S ab
AB = − i

(−)

S ab
BA. In a similar formula for ωȦḂµ, in-

stead of
(−)

S one has the self-dual spin-tensor
(+)

S abȦ
Ḃ := g[a|CȦ|gb]CḂ .

The connection (A2.4) is determined up to a term i∆µ δ
A
B , where ∆µ is an ar-

bitrary real vector, usually related to electromagnetic field, which was assumed
to vanish.

Computing the commutator of the covariant spinor derivatives, one can ob-
tain the expression for the spinor curvature

RABµν = ∂µω
A
Bν − ∂νωABµ + ωACµω

C
Bν − ωACνωCBµ

in the form

RABµν =
1

4
Rabµν(Γ)

(−)

S
abA

B ,

and similarly for RȦḂµν .
The equation (A2.4) shows that the Lorentz (the Riemann-Cartan) part of the

connection Γ[ab]µ interacts with the spinors in a conventional minimal coupling
manner, while the non-metricity is represented only by the Weyl vectorKµ. This
agrees with the fact that the structural group of the spinor bundle GL(2, C)
is isomorphic to the Weyl group (which is the direct product of the Poincaré
group P10 by the 1-dimensional Abelian group of dilations R1), multiplied by
the group of the phase transformations.

The transition from the 2-spinors ξA to the bispinors (or the 4-spinors of
Dirac) is straightforward:

Ψ =

ξA
ηȦ

 .

The 4× 4 Dirac matrices then read

γµ =

(
0 gµAḂ

gµAḂ 0

)
.

With our choice of the generalized Pauli matrices, these Dirac matrices repro-
duce Weinberg’s [192] representation. The Dirac matrices satisfy

γµγν = gµνI +
i

2
εµναβγαγβγ5, (A2.5)

where γ5 = −i
4! εαβµνγ

αγβγµγν = −iγ0̂γ1̂γ2̂γ3̂, and I is a 4 × 4 unit matrix.
From these fundamental relations, one straightforwardly derives

γ[αγβ]γµ − γµγ[αγβ] = 2
(
γαgβµ − γβgαµ

)
,

γ[αγβ]γµ + γµγ[αγβ] = 2 i εαβµνγνγ5.
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Finally, we define the covariant derivative of 4-spinors: DµΨ = ∂µΨ + ωµΨ.
Similarly to (A2.3), we impose the compatibility condition

Dµγ
ν = ∂µγ

ν + Γνλµγ
λ + ωµγ

ν − γνωµ = − 1

2
Kµλ

νγλ,

which is consistent with the symmetrized relation γ(µγν) = gµνI, see (A2.5).
Note that ∇λgµν = − gµαgνβKλαβ = −Kλ

µν . The solution of the compatibil-
ity condition is straightforward and represents a 4-spinor generalization of the
connection (A2.4)

ωµ =
1

4
Γ[ab]µγ

[aγb]. (A2.6)

Hence, the covariant derivative of 4-spinor reads

DµΨ = ∂µΨ + ωµΨ = ∂µΨ +
1

4
Γ[ab]µγ

[aγb]Ψ. (A2.7)

The covariant derivative of the Dirac conjugated spinor Ψ = Ψ†β has the fol-
lowing form:

Dµ Ψ = ∂µ Ψ−Ψωµ = ∂µ Ψ− 1

4
Γ[ab]µΨγ[aγb]. (A2.8)

It is worthwhile to note that for the metric with the signature (−,+,+,+) the

Dirac conjugation is defined by the matrix β = iγ0̂, and the Dirac matrices are
anti-Hermitian in the sense [192]

β γa† β = − γa.

In Weinberg’s representation we explicitly have

β =

0 1

1 0

 ,

and hence β2 = I.
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A3. Basic notations

We summarize here the basic notations and conventions used in the book.

Indices

Greek indices α, β, · · · = 0, 1, 2, 3 refer to the local world coordinates on the
spacetime manifold. Latin indices a, b, c, · · · = 0, 1, 2, 3 label the local Lorenz
(tetrad) components, except for the Chapters 2, 3, and 7, where the indices
a, b, c, · · · = 1, 2, 3 refer to the 3-dimensional (spatial) coordinates. Separate
local Lorentz components are denoted with hats over the index, to distinguish
them from the world components. E.g., v0̂ is the 0-th component of a vector
with respect to the orthonormal tetrad, in contrast to the 0-th component v0

in the coordinate basis. The upper case Latin indices A,B,C, · · · = 1, 2 label
the spinor components.

Metric

The spacetime metric in 4 dimensions has the signature (−,+,+,+), unless
the other signature is assumed. Its determinant is g ≡ |4g| = − det gµν . In
Chapters 2, 3, and 7, the determinant of the 3-dimensional (spatial) metric is
denoted as g1/2 = (det gab)

1/2. The totally antisymmetric Levi-Civita tensor
density is εµναβ =

√
g ηµναβ , where the completely antisymmetric symbol has

the only nontrivial component η0123 = +1. The scalar product for the spinors
is defined by εAB = − εBA.

Derivatives

The partial derivatives with respect to the spacetime coordinates are denoted
∂
∂xµ = ∂µ = ,µ . The Riemannian covariant derivatives (defined by the Christof-

fel symbols) are denoted as ;µ or
{}
∇µ. The general covariant derivatives with

respect to an arbitrary linear connection Γ are denoted as ∇,∇Γ, DΓ. For the
non-Riemannian objects, constructed from Γ, the functional dependence is al-
ways explicitly specified, for example R(Γ).
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A4. Comments on the literature and general remarks

Chapter 1

The equations of the general relativity theory of gravitation (GR) in the
Riemannian spacetime were postulated by A. Einstein [22] in 1915, and simul-
taneously they were derived by D. Hilbert [23] on the basis of the principle
of least action. In 1922, É. Cartan [20] introduced the torsion into the differ-
ential geometry. His studies of the manifolds with torsion were motivated by
the interest in GR. Apparently, being under the influence of the results of the
Cosserats brothers [25] on a continuous medium as a manifold, Cartan pro-
posed [19] to couple the torsion tensor to an internal angular momentum of the
matter. Later, the ideas of Cosserats-Cartan formed the basis of the continuous
theory of dislocations [29].

In the gravity theory, these notions received a substantiation only after the
gauge approach was formulated (H. Weyl [5], C.N. Yang and R. Mills [30],
R. Utiyama [31]). The physical ideas that underlie the gauge theory about the
existence of the fundamental matter fields and the fields mediating interactions
became the basis of R. Utiyama’s attempt to consider the gravitational field
as a gauge one for the Lorentz group SO(3, 1) (see also [32]). In his work,
the Lorentz connection for the first time appeared as the corresponding gauge
potential. However, the weak point in the approach of R. Utiyama was the
introduction of the tetrads (metric) beyond the gauge scheme and an ad hoc
requirement of the absence of the torsion. Eventually, these shortcomings were
recongnized. D. Sciama [33] dropped the condition of the vanishing torsion ten-
sor. K. Hayashi [34] and B. De Witt [35] pointed out that the metric could be
associated with a group of the spacetime translations T4 (more precisely, with
the general coordinate transformations, understood as translations), see also
[13, 37]. T. Kibble [36] considered the Poincaré group P10 = SO(3, 1) ⊃× T4 as a
fundamental spacetime symmetry, which allowed him to give a gauge interpreta-
tion of the connection and the metric, cf. also [38]. Taking the Hilbert-Einstein
linear in the curvature Lagrangian as a function of the independent metric and
connection, D. Sciama and T. Kibble derived the field equations of the gauge
P10-theory of gravity, later named by A. Trautman [6] as the Einstein-Cartan
theory (ECT). The thorough analysis of this theory is presented in the papers
of F. Hehl [7] and A. Trautman [6] (see also [15, 16]).

Chapter 2

The canonical formalism of systems with singular Lagrangians was construct-
ed by P. Dirac [40]. He was also the first who applied this formalism to the
gravitational field and reduced the Hilbert-Einstein gravitational action of the
canonical form [40]. The Hamiltonian formalism of the gravitational field was
thoroughly studied in the papers of R. Arnowitt, S. Deser, and C. Misner [41].
The same program was realized by K. Kuchař [42, 43, 44] on the invariant
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language making use of the system of arbitrary space-like hypersurfaces, also
extending the canonical formalism to the case of arbitrary matter field min-
imally interacting with the gravitation. In our presentation of the canonical
formalism of gravitating systems, we followed the works of this author.

The proof of the degeneracy of the Lagrangian for the action invariant with
respect to the local group, was borrowed from the lecture of V. P. Frolov at the
Lebedev Physical Institute of the Russian Academy of Sciences.

The relation of the group of invariance of the action in the configuration
space with the corresponding system of canonical transformations in the phase
space, forming the “pseudogroup”, was studied in the papers of E. S. Fradkin,
G. A. Vilkovisky [45, 46], and I. A. Batalin [47]. The same was done in the paper
of C. Teitelboim [48] who discussed the general coordinate invariance group for
the action of the physical fields in the curved spacetime.

Chapter 3

The systematic method of the choice of dynamically independent degrees of
freedom of the gravitational field was constructed by R. Arnowitt, S. Deser,
and C. Misner [41], and subsequently generalized by K. Kuchař [44, 52] to the
case of arbitrary gravitating systems with the matter sources.

An important difference of the dynamics of the asymptotically flat open world
from the closed worlds was emphasized by De Witt [53], who attracted attention
to the significance of the surface term in the Hamiltonian of the asymptotically
flat gravitating world. The role of this surface integral in the Einstein theory
was also discussed by T. Regge and C. Teitelboim [51], who connected it with
the generator of the time translations at a spatial infinity.

The dynamics of the linearized gravitational field presented here has been con-
sidered by ADM [41], which identified the two transverse traceless gravitational
wave modes and constructed the Hamiltonian of the gravitational radiation.

Chapter 4

É. Cartan [79] was the founder of the spinor theory. B. Wan der Waerden
and L. Infeld [80] introduced the 2-spinors. H. Weyl [84], V. A. Fock, and
D. D. Ivanenko [85] developed a framework for the spinor analysis in the Rie-
mannian space V4. The expressions obtained by them for the spin connections
entered the literature as the Fock-Ivanenko coefficients. The Dirac equation
in the Riemann-Cartan spacetime U4 was first considered by H. Weyl [83].
V. I. Rodichev [55] demonstrated that the Dirac equation (with the zero mass)
in the Minkowski space M4 with torsion becomes a non-linear spinor equation
of Ivanenko-Heisenberg [56] type (that underlies the unified theory of matter
developed by W. Heisenberg [57]). This result was generalized by T. Kibble [36]
to the spaces U4. The spinor analysis in the space G4 was constructed in [18].
Detailed presentations of the spinor formalism can be found in [81, 82].
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The question, whether the torsion field interacts with vector fields is still
open in the modern literature. A. Trautman [6] and F. Hehl [7] made a con-
vincing observation that the massless vector field should not interact with the
torsion since such a coupling would violate the gauge invariance (see also [89]).
Nevertheless, in the book we decided to demonstrate that the opposite point
of view has some interesting consequences, caused by this interaction. In par-
ticular, the non-linear nature of the vector field equations, arising due to the
(A-Q)-interaction, leads to the existence of the soliton solutions [63].

The conformal transformations introduced in Sec. 4.2., were also considered
independently in [90, 91].

The first non-singular cosmological solutions in the ECT were obtained in [88,
123, 174]. The analysis of different types of spatially homogeneous cosmological
models with the Weyssenhoff fluid is given in [175]. The analogy between the
torsion and the cosmological Λ-term was indicated in [176, 177].

The first correct formulation of the problem of the particle production was
developed for cosmology in GR by A. A. Grib, S. G. Mamaev, V. M. Mostepa-
nenko [61], L. Parker [76], Ya. B. Zeldovich, A. A. Starobinsky [77]. We follow
[61] in the presentation of the production of the scalar particles in the U4 space-
time.

Chapter 5

The work of T. Kibble [36] is one of main contributions in the framework of
so-called physical approach, where the direct localization of the global transfor-
mation of some group makes it necessary to “compensate” the corresponding
non-covariance of the ordinary derivative by the introduction of the gauge field.
Later works in this direction essentially were focused on the finding of the “true”
gauge group for the theory of gravity, leaving the main structure of the physical
approach unchanged (in the work [94], one can find an incomplete list of the
groups and space-time structures). The criticism of this approach is contained
in [96]. Along with this, the geometrical approach was developed on the basis of
an idea of identifying the potential of the gauge field with a connection on some
bundle over the spacetime. For the Yang-Mills theory, this fact was first noticed
in [95] and later it was fully developed in investigations of A. Trautman [97].
A somewhat intermediate position between the physical and the geometrical
approaches is held by the direction, developed by the group of F. Hehl [7, 98],
which is based not so much on the gauge concept but on the fundamental link
of the local invariance principle with the conservation laws. The latter studies
established a remarkable fact (see also [38]): the source of the gauge field of the
group G is the canonical Noether current corresponding to G-invariance of the
theory.

The current status of the gauge theory of gravity is characterized by the
application of the modern differential-geometric and topological methods for the
study of their structure. The connection structure in the bundle of affine frames
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presented in this book was first proposed in [99, 100], as well as independently
developed in several different formulations in [101]-[105].

The idea to relate the existence of the gravitational field to the spontaneous
breaking of a spacetime symmetry was in different forms expressed by many
authors [97], [106]-[111]. The nonlinear realizations were introduced earlier in
the study of the phenomenological Lagrangians in the theory of chiral symme-
tries [112, 113, 114]. The analysis of the dynamics of the non-linear gauge fields
was considered in the paper of Y.M. Cho [116], and the authors followed this
work in the description of spontaneous breaking in the Higgs mechanism.

Chapter 6

The Lagrangians and the theories based on them considered in Sec. 6.1. were
studied in the following papers: (b) – in [128] (and more consistently in [129]);
(d) see also [129]; (e) – in [130]. The general Lagrangians constructed as a sum
of all possible terms quadratic in the curvature and the torsion (with arbitrary
coefficients) were studied in [131, 132, 133, 138]. Some authors considered the
possibility to restrict the choice of the coupling coefficients by attracting ad-
ditional physical and geometrical ideas such as the requirement of the absence
of the “ghost” and tachyon poles in the tree-level propagator [134, 135], the
validity of Birkhoff’s theorem [136], the correspondence with GR [131], etc.

In Sec. 6.3., when studying the correspondence of the P10-theory with GR,
we used the method applied in [137] to the Lagrangian of a particular form. For
a review of the studies of the issue of the cosmological constant in the gravity
and supergravity, see in [139].

The gravitational instantons (such as Euclidean Schwarzschild, Taub-NUT,
CP2) in the Riemannian gravity theory are studied in [142, 143, 144].

Chapter 7

The method of canonical quantization of the degenerate systems and, in par-
ticular, of the gravitational field was pioneered by P. A. M. Dirac [40], B. S. De-
Witt [53] L. D. Fadeev and V. N. Popov [154], E. S. Fradkin and G. A. Vilkovisky
[45]. The path integral technique was introduced into the quantum theory in
the works of Feynman [162]. The method of the covariant quantization of the
gravitational field is studied in detail in [45, 46, 154, 157, 158, 159]. Many pa-
pers are dedicated to the quantization of the cosmological systems in the ADM
formalism. We mention just a few of them, which more clearly characterize the
main features of this approach [162, 163, 165, 178]. In the majority of works,
the study of the quantum dynamics was conducted in the framework of the
model assumptions about cosmology. For example, it was common to assume
homogeneity, or a certain symmetry, to take the majority of the modes of the
physical fields as frozen, to neglect them on one or another stage of evolution,
etc.

A. Peres [166] introduced the equations of the Einstein-Hamilton-Jacobi the-
ory as a link between the classical GR and the quantum geometrodynamics.
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Quantum geometrodynamics was developed in the works of P. A. M. Dirac
[40], B. S. DeWitt [53], and J. A. Wheeler [167]. The attempt to construct the
path integral in the quantum geometrodynamics was made by H. Leutwyler
[169], who, in particular, was the first to propose the correct local measure for
the quantum gravity. The method of the path integration in the quantum ge-
ometrodynamics was constructed in [168, 204]. Old application of the quantum
geometrodynamical method in special models can be found in very many works
of which we mention only a few: [165, 173, 179]-[182]. A special mention de-
serve the attempts of solving the Wheeler-DeWitt equation nonperturbatively
[117]-[119] in the approximation of the so-called ultralocal state in the quantum
gravitodynamics [117].

The Batalin-Fradkin-Vilkovisky (BFV) path integral and operator quantiza-
tion of constrained systems was developed in [214, 215, 216, 217, 218, 219, 220]
starting with the introduction of the relativistic phase space and the nilpotent
BRST operator acting in their representation space [213, 46]. The Batalin-
Marnelius procedure of gauging out the BRST symmetry in the physical sub-
space of this space was built in [221, 222, 223] and used for the construction of
the inner product in quantum geometrodynamics in [204, 206, 208, 207, 210].
These works also convey the consistency between the reduced (physical) phase
space quantization and the Dirac quantization in generic constrained systems
and gravity theory, in particular. This consistency is demonstrated explicitly in
the one-loop order of the semiclassical expansion in [205, 206, 207, 208, 209],
where also the operator realization of quantum Dirac constraints is derived in
the subleading (one-loop) order in the Planck constant.

Widely acclaimed prescriptions for the quantum state of the Universe in
the form of the no-boundary or tunneling wavefunction can be found in [232,
233, 234, 235, 236, 237]. Recent applications of the path integral method in
quantum geometrodynamics are the construction of the microcanonical density
matrix of the early Universe [239], the calculation of its statistical sum for
models dominated by conformal quantum fields, which suppresses to zero in
the ensemble the contribution of the Hartle-Hawking no-boundary state [238]
and imposes an upper subplanckian bound on the energy scale of the new type
of (hill-top) inflationary scenario [240, 241].

Further reading

Two books by M. Blagojević and F. Hehl [200, 201] on the gauge gravity were
published since the first Russian edition of our monograph. They give a broad
overview of the history and of the recent developments, providing a comple-
mentary discussion of both mathematical and physical aspects of the subject.
In an attempt to fill all the gaps and omissions that reflect our selection of the
topics for the current book, we compiled an essentially complete bibliography
on the gauge approach in gravity and related issues. The alphabetically ordered
list can be found at the end of this book on page 201.
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[42] Kuchař K., Geometry of hyperspace. I, J. Math. Phys. 17 (1976) 777-791.
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Math. Phys. 4 (1980) 49-51.

[103] Norris L.K., Fulp R.O., and Davis W.R., Underlying fiber bundle structure
of A(4) gauge theories, Phys. Lett. A79 (1980) 278-282.

[104] Luehr C.P. and Rosenbaum M., Gravitation as an internal gauge theory
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2788-2795.

34. Aldrovandi R. and Pereira J.G., On the quantization of the Poincaré and de Sitter gauge
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of a quadratic Poincaré gauge field theory, in: “Proc. of the 2nd Marcel Grossmann Meeting
on Recent Progress of the Fundamentals of General Relativity”, Ed. R. Ruffini (North Holland:
Amsterdam, 1981) 413-450.

151. Baekler P., Hehl F.W., and Mielke E.W., Nonmetricity and torsion: facts and fancies
in gauge approaches to gravity, in: “Proc. of the 4th Marcel Grossmann Meeting on General
relativity”, Ed. R. Ruffini (North Holland: Amsterdam, 1986) 277-316.

152. Baekler P., Hehl F.W., and Nester J.M., Poincaré gauge theory of gravity: Friedman cos-
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288. Blagojević M. and Vacilić M., Hamiltonian analysis of extra gauge symmetries in an R+T 2

theory of gravity, Phys. Rev. D34 (1986) 357-366.
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318. Boldo J.L., de Moraes L.M., and Helayël-Neto J.A., Comments on topologically massive
gravity with propagating torsion, Class. Quantum Grav. 17 (2000) 813-823.

319. Boldo J.L. and Sasaki C.A.G., Symmetry aspects of fermions coupled to torsion and elec-
tromagnetic fields, Europhys. Lett. 59 (2002) 180.

320. Bonder Y., Torsion or not torsion, that is the question, Int. J. Mod. Phys. D25 (2016)
1644013 (5 pages).

321. Borchenius K., Symmetries in unified gauge theory with torsion, Nuovo Cim. A46 (1978)
403-418.

322. Borisov A.B., The unitary representation of the general covariant group algebra, J. Phys.:
Math. and Gen. A11 (1978) 1057-1067.

323. Borowiec A., Ferraris M., Francaviglia M., and Volovich I., Energy-momentum complex
for nonlinear gravitational Lagrangians in the 1st-order formalism, Gen. Relat. Grav. 26
(1994) 637-645.

324. Borovko E.V., Space-time with flat symmetry in Poincaré gauge gravitational theory, Sov.
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torsion, C.R. Acad. Sci. (Paris) 174 (1922) 593-595; English translation: On a generalization
of the notion of Riemann curvature and spaces with torsion, in: “Proc. of the 6th Course of
Internat. School on Cosmology and Gravitation: Spin, Torsion, Rotation, and Supergravity” (Erice,
1979), Eds. P.G. Bergmann and V. DeSabbata (Plenum: New York, 1980) 489-491.
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gauge theory of gravitation, Phys. Lett. A111 (1985) 693-642.

494. Chen H.H., Chern D.-C., Hsu R.R., Nester J.M., and Yeung W.B., Asymptotically Newto-
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565. Cvetković B. and Simić M., 5D Lovelock gravity: New exact solutions with torsion, Phys.
Rev. D94 (2016) 084037 (9 pages).



228 Bibliography on gauge gravity theory

D

566. D’Adda A., On the construction of gravity and supergravity from fundamental spinorial
constituents, Phys. Lett. B119 (1982) 334-338.

567. Dadhich N. and Pons J.M., On the equivalence of the Einstein-Hilbert and the Einstein-
Palatini formulations of general relativity for an arbitrary connection, Gen. Rel. Grav. 44
(2012) 2337-2352.

568. Dai M.-C., Nester J.M., and Chern D.-C., Anisotropic cosmological models in Poincaré
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order formalism, Ann. Inst. H.Poincaré A51 (1989) 389-417.
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torsion mode in Poincaré gauge theory, Phys. Rev. D87 (2013) 027301 (5 pages).

1040. Geng C.-Q., Luo L.-W., and Tseng H.-H., Teleparallel gravity in five-dimensional theories,
Class. Quantum Grav. 31 (2014) 185004.

1041. Geng W.T. and Duan Y.S., Space-time torsion and the quantization of spin, Acta Phys.
Sinica (Overseas Edition) 7 (1998) 249-257.

1042. Gerbert Ph. de Sousa, On spin and (quantum) gravity in (2+1) dimensions, Nucl. Phys.
B346 (1990) 440-472.

1043. Germán G., Brans-Dicke-type models with torsion, Phys. Rev. D32 (1985) 3307-3308.

1044. Germán G., On Kaluza-Klein theory with torsion, Class. Quant. Grav. 2 (1985) 455-460.
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with well-posed initial value problems, Phys. Lett. A222 (1996) 37-42.

1233. Heckel B.R., Terrano W.A., and Adelberger E.G., Limits on exotic long-range spin-spin
interactions of electrons, Phys. Rev. Lett. 111 (2013) 151802 (4 pages).

1234. Hehl F.W., Der Spindrehimpuls in der allgemeinen Relativitätstheorie, Abh. Braunschw.
Wiss. Ges. 18 (1966) 98-130.

1235. Hehl F.W., How does one measure torsion of space-time?, Phys. Lett. A36 (1971) 225-226.

1236. Hehl F.W., Spin and torsion in general relativity: I. Foundations, Gen. Relat. Grav. 4
(1973) 333-349.

1237. Hehl F.W., Spin and torsion in general relativity. II: Geometry and field equations, Gen.
Relat. Grav. 5 (1974) 491-516.

1238. Hehl F.W., On the energy tensor of spinning massive matter in classical field theory and
general relativity, Repts Math. Phys. 9 (1976) 55-82.

1239. Hehl F.W., Fermions and gravity, in: “Einstein 1978-1955. Colloque du Centenaire” (College
de France, 1979) (CNRS: Paris, 1980) 119-148.
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1255. Hehl F.W., Kopczyński W., McCrea J.D., and Mielke E.W., Chern-Simons terms in metric-
affine spacetime: Bianchi identities as Euler-Lagrange equations, J. Math. Phys. 32 (1991)
2169-2180.
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K. Hübner, A. Oberschelp, and V. Weidemann (Verlag Peter Lang: Frankfurt, 1988) 241-310.

1267. Hehl F.W., McCrea J.D., Mielke E.W., and Ne’eman Y.,Progress in metric-affine theories
of gravity with local scale invariance, Found. Phys. 19 (1989) 1075-1100.

1268. Hehl F.W., McCrea J.D., Mielke E.W., and Ne’eman Y., Metric-affine gauge theory of grav-
ity: field equations, Noether identities, world spinors, and breaking of dilaton invariance,
Phys. Repts. 258 (1995) 1-171.

1269. Hehl F.W. and Ne’eman Y., Spacetime as a continuum with micro-structure and metric-
affine gravity, in: “Modern Problems of Theoretical Physics. Festschrift for Professor D.Ivanenko”,
Eds. P.I. Pronin and Yu.N. Obukhov (World Scientific: Singapore, 1991) 31-52.

1270. Hehl F.W., Ne’eman Y., Nitsch J., and von der Heyde P., Short-range confining component
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tation, Acta Phys. Pol. B36 (2005) 2143-2147.

1452. Karbanovski V.V., Nefiodova O.V., Kolesnikova Yu.V., Limonnikova Yu.N., and Sorokin
A.S., Study of cosmological model Bianchi I in the conformal Poincaré-gauge theory of
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1603. Kopczyński W., A fibre bundle description of coupled gravitational and gauge fields, Lect.
Notes Math. 836 (1980) 462-483.
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1832. Maćıas A., Mielke E.W., and Morales-Técotl H.A., Projectively invariant metric-affine
models of gravity, in: “New Frontiers in Gravitation”, Ed. G.A. Sardanashvily (Hadronic Press:
Palm Harbor, 1996) 243-255.
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the gravitational field and the Poincaré group, Class. Quantum Grav. 23 (2006) 6245.

1872. Maluf J.W. and Goya A., Space-time defects and teleparallelism, Class. Quantum Grav. 18
(2001) 5143.

1873. Maluf J.W. and Kneip A., Gravitational energy of conical defects, J. Math. Phys. 38 (1997)
458-465.

1874. Maluf J.W., Martins E.F., and Kneip A., Gravitational energy of rotating black holes,
J. Math. Phys. 37 (1996) 6302-6310.

1875. Maluf J.W. and Santos-Silva G., Stability of R+T 2 theories of gravitation, Class. Quantum
Grav. 25 (1993) 653-661.

1876. Maluf J.W. and da Rocha-Neto J.F., General relativity on a null surface: Hamiltonian
formulation in the teleparallel geometry, Gen. Relat. Grav. 31 (1999) 173-185.

1877. Maluf J.W. and da Rocha-Neto J.F., Static Bondi energy in the teleparallel equivalent of
general relativity, J. Math. Phys. 40 (1999) 1490-1503.

1878. Maluf J.W. and da Rocha-Neto J.F., Hamiltonian formulation of general relativity in the
teleparallel geometry, Phys. Rev. D64 (2001) 084014 (8 pages).



288 Bibliography on gauge gravity theory
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Lett. A100 (1984) 397-399.
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Pol. B40 (2009) 229-239.

2009. Minkevich A.V., Accelerating Universe with spacetime torsion but without dark matter
and dark energy, Phys. Lett. B678 (2009) 423-426.



294 Bibliography on gauge gravity theory

2010. Minkevich A.V., De Sitter spacetime with torsion as physical spacetime in the vacuum
and isotropic cosmology, Mod. Phys. Lett. A26 (2011) 259-266.

2011. Minkevich A.V., Limiting energy density and a regular accelerating universe in Riemann-
Cartan spacetime, JETP Lett. 94 (2012) 831-836.

2012. Minkevich A.V., On theory of regular accelerating universe in Riemann-Cartan spacetime,
Mod. Phys. Lett. A28 (2013) 1350090 (12 pages).

2013. Minkevich A.V., Gauge gravitation theory in Riemann-Cartan space-time and gravita-
tional interaction, Gravitation and Cosmology 22 (2016) 148-158.

2014. Minkevich A.V., Towards the theory of regular accelerating Universe in Riemann-Cartan
space-time, Int. J. Mod. Phys. A31 (2016) 1641011 (10 pages).

2015. Minkevich A.V. and Fedorov F.I., On the Lagrangian formalism in field theory, Acta. Phys.
Pol. B11 (1980) 367-377.

2016. Minkevich A.V. and Fedorov F.I., Gauge approach in gravity and relativistic dynamics
of classical systems, in: “Fundamental Interactions”, Ed. V.N.Ponomariev (Pedagogical Inst.
Press: Moscow, 1984) 141-159 (in Russian).

2017. Minkevich A.V. and Fedorov F.I., On conformal invariant gravitating systems in the
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945-955.

2091. Nakariki S., Masaki T., Fukuma K., Fukui T., Mizouchi M., Ohtani T., and Tashiro T.,
Interaction of massless Dirac field with a Poincaré gauge field, Progr. Theor. Phys. 100
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2162. Ne’eman Y. and Šijački Dj., World spinors – construction and some applications, Found.
Phys. 27 (1997) 1105-1122.

2163. Nelson P.C., Gravity with propagating pseudoscalar torsion, Phys. Lett. A79 (1980) 285-
287.

2164. Nesseris S., Basilakos S., Saridakis E.N., and Perivolaropoulos L., Viable f(T ) models are
practically indistinguishable from ΛCDM, Phys. Rev. D88 (2013) 103010 (16 pages).

2165. Nester J., Effective equivalence of the Einstein-Cartan and Einstein theories of gravity,
Phys. Rev. D16 (1977) 2395-2401.

2166. Nester J.M., Gravity, torsion and gauge theory, in: An introduction to Kaluza-Klein theories,
Ed. H.C.Lee (World Scientific: Singapore, 1984) 83-115.

2167. Nester J.M., Is there really a problem with the teleparallel theory?, Class. Quantum Grav. 5
(1988) 1003-1010.

2168. Nester J.M., A covariant Hamiltonian for gravity theories, Mod. Phys. Lett. A06 (1991)
2655.

2169. Nester J.M., Special orthonormal frames, J. Math. Phys. 33 (1992) 910-913.

2170. Nester J.M., Some progress in classical canonical gravity, in: Directions in General Relativity:
Proc. of Misner-Brill 1993 Int. Symp., Maryland, Eds. B.L. Hu, M.P. Ryan, Jr., and C.V. Vishvesh-
wara (Cambridge: University Press, 1993) vol. 1, 245-260.

2171. Nester J.M., General pseudotensors and quasilocal quantities, Class. Quantum Grav. 21
(2004) S261.

2172. Nester J.M. and Chen C.-M., Gravity: A gauge theory perspective, Int. J. Mod. Phys. D25
(2016) 1645002 [11 pages].

2173. Nester J.M. and Isenberg J., Torsion singularities, Phys. Rev. D15 (1977) 2078-2087.

2174. Nester J.M., Tung R.-S., and Zhytnikov V.V., Some spinor-curvature identities, Class.
Quantum Grav. 11 (1994) 983-987.

2175. Nester J.M. and Wang C., Can torsion be treated as just another tensor field?, Int. J. Mod.
Phys. Conf. Ser. 07 (2012) 158.

2176. Nester J.M. and Yo H.J., Symmetric teleparallel general relativity, Chinese J. Phys. 37
(1999) 113-117.

2177. Neville D.E., Gravity Lagrangian with ghost-free curvature-squared terms, Phys. Rev. D18
(1978) 3535-3543.

2178. Neville D.E., “No hair” theorem for black holes in the Mansouri-Chang theory of gravi-
tation, Phys. Rev. D19 (1979) 1033-1035.

2179. Neville D.E., Gravity theories with propagating torsion, Phys. Rev. D21 (1980) 867-873.

2180. Neville D.E., Experimental bounds of the coupling strength of torsion potentials, Phys. Rev.
D21 (1982) 2075-2080.

2181. Neville D.E., Spin-2 propagating torsion, Phys. Rev. D23 (1981) 1244-1249.

2182. Neville D.E., Experimental bounds of the coupling of massless spin-1 torsion, Phys. Rev.
D25 (1982) 573-576.

2183. Neville D.E., Conformal divergences and space-time foam in an R+R2 theory, Phys. Rev.
D25 (1982) 2638-2644.



302 Bibliography on gauge gravity theory

2184. Neville D.E., Torsion and chiral fermions in Kaluza-Klein theories, Phys. Rev. D33 (1986)
363-369.

2185. Nguyen Hong Chuong, Some analytical solutions for isotropic viscous models in the Poin-
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2201. Nieh H.T., Local Poincaré sysmmetry: quantum effects, in: “Proc. of the 4th Marcel Gross-
mann Meeting on General relativity”, Ed. R. Ruffini (North Holland: Amsterdam, 1986) 675-683.

2202. Nieh H.T. and Rauch R., Riemann-Cartan type gravitational theories satisfying Birkhoff’s
theorem, Phys. Lett. A81 (1981) 113-115.

2203. Nieh H.T. and Yan M.L., Quantized Dirac field in curved Riemann-Cartan background.
I. Symmetry properties, Green’s functions, Ann. Phys. (USA) 138 (1982) 237-259.

2204. Nieh H.T. and Yan M.L., An indentity in Riemann-Cartan geometry, J. Math. Phys. 23
(1982) 373-374.

2205. Nikiforova V., Randjbar-Daemi S., and Rubakov V., Infrared modified gravity with dynam-
ical torsion, Phys. Rev. D80 (2009) 124050 (10 pages).



Bibliography on gauge gravity theory 303

2206. Nikiforova V., Randjbar-Daemi S., and Rubakov V., Self-accelerating universe in modified
gravity with dynamical torsion, Phys. Rev. D95 (2017) 024013 (6 pages).

2207. Nikolaenko V.M., Gauge-invariant gravitational field equations in a theory with quadratic
Lagrangians, Sov. Phys. Doklady 19 (1975) 684-685 [Doklady AN SSSR 218, n. 11 (1974)
1068-1070 (in Russian)].

2208. Nikolaenko V.M., Second order Lagrangians of curvature in the theory of gravity, Acta
Phys. Pol. B7 (1976) 681-692.

2209. Nikolaenko V.M., Back reaction of a quantized field in the gauge treatment of gravity,
Acta Phys. Pol. B8 (1977) 911-918.

2210. Ning B. and Li F.-L., Relative entropy and torsion coupling, Phys. Rev. D 94 (2016) 126007
(16 pages).

2211. Nikolic I.A., Dirac Hamiltonian formulation and algebra of the constraints in the Einstein-
Cartan theory, Class. Quantum Grav. 12 (1995) 3103-3114.

2212. Nishida K., A generalized gauge theory of gravity, Prog. Theor. Phys. 123 (2010) 227-235.

2213. Nishino H., On supergravity with propagating Lorentz connection, Progr. Theor. Phys. 66
(1981) 287-302.

2214. Nishino H., Local tensor calculus in supergravity with propagating Lorentz connection,
Progr. Theor. Phys. 68 (1982) 975-988.

2215. Nishino H., Consistency of couplings in supergravity theory with propagating Lorentz con-
nection, Progr. Theor. Phys. 68 (1982) 1765-1775.

2216. Nishino H., and Rajpoot S., Teleparallelism for a massive spin-2 field, Class. Quantum Grav.
28 (2011) 125019 (11 pages).

2217. Nishioka M., A remark on coefficients of connection with two gauge fields, Gen. Relat.
Grav. 15 (1983) 591-593.

2218. Nishioka M., Local transformation and symmetric connection in space-time, Lett. Nuovo
Cim. 36 (1983) 266-268.

2219. Nitsch J., The macroscopic limit of the Poincaré gauge field theory of gravitation, in:
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the Poincaré group, Phys. Rev. D66 (2002) 024013 (6 pages).
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2010, Ed. Kostelecký V.A. (World Scientific: Singapore, 2010) p. 65-69.

2655. Shapiro I.L. and Teixeira P.M., Quantum Einstein-Cartan theory with the Holst term,
Class. Quantum Grav. 31 (2014) 185002.

2656. Sharif M., Comments on torsion, massive electrodynamics and gravitation induced by
scalar fields, Astrophys. Space Sci. 238 (1996) 309-310.

2657. Sharin Yu.A., Physical interpretation of curved space with torsion, Sov. Phys. J. 33 (1990)
861-864 [Izvestia VUZov, Fizika, n. 10 (1990) 59-62 (in Russian)].

2658. Sharin Yu.A., Physical interpretation of a curvilinear space with torsion, Russ. Phys. J. 52
(2009) 1113-1115.

2659. Shen J.-Q., A gravitational constant and a cosmological constant in a spin-connection
gravitational gauge field theory, J. Phys. A: Math. Theor. 42 (2009) 155401.

2660. Shen J.-Q., Gravitational gauge theory developed based on the Stephenson-Kilmister-Yang
equation, Int. J. Theor. Phys. 48 (2009) 1566-1582.

2661. Shestopal V.O., Feasibility of describing the gravitational field as a space with absolute
parallelism, Sov. J. Phys. 16 (1973) 1692-1694 [Izvestia VUZov, Fizika n. 12 (1973) 83-85 (in
Russian)].



324 Bibliography on gauge gravity theory

2662. Shie K.-F., Nester J.M., and Yo H.-J., Torsion cosmology and the accelerating universe,
Phys. Rev. D78 (2008) 023522 (16 pages).

2663. Shipov G.I., Tetrad field equations in the space of absolute parallelizm, Sov. J. Phys. 19
(1976) 798-800 [Izvestia VUZov, Fizika n. 6 (1976) 132-133 (in Russian)].

2664. Shipov G.I., Nonlinear spinor equations in general relativity, Sov. J. Phys. 20 (1977) 378-
382 [Izvestia VUZov, Fizika n. 3 (1976) 121-125 (in Russian)].

2665. Shipov G.I., Theory of gravitation in the space of absolute parallelizm, Sov. J. Phys. 20
(1977) 813-817 [Izvestia VUZov, Fizika n. 6 (1976) 142-147 (in Russian)].

2666. Shipov G.I., Geometry of absolute parallelism in the theory of physical vacuum, Russ. Phys.
J. 37 (1994) 853-879 [Izvestia VUZov, Fizika n. 9 (1994) 64-88 (in Russian)].

2667. Shirafuji T., Lorentz invariant theory of gravitation. Gravitational interaction of spin-1/2
particles, Progr. Theor. Phys. 62 (1979) 802-822.

2668. Shirafuji T. and Nashed G.G.L., Energy and momentum in the tetrad theory of gravitation,
Progr. Theor. Phys. 98 (1997) 1355-1370.

2669. Shirafuji T., Nashed G.G.L., and Hayashi K., Energy of general spherically symmetric
solution in tetrad theory of gravitation, Progr. Theor. Phys. 95 (1996) 665-678.

2670. Shirafuji T., Nashed G.G.L., and Kobayashi Y., Equivalence principle in the new general
relativity, Progr. Theor. Phys. 96 (1996) 933-947.

2671. Shirafuji T. and Suzuki M., Gauge theory of gravitation. A unified formulation of Poincaré
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2682. Šijački Dj. and Ne’eman Y., Hadrons in an SL(4, R) classification. 2. Mesons and
C-assignments, P-assignments, Phys. Rev. D47 (1993) 4133-4141.

2683. Singh K.D., Subspaces of a space with torsion, Tensor 6 (1956) 6-14.



Bibliography on gauge gravity theory 325

2684. Singh P., On axial vector torsion in vacuum quadratic Poincaré gauge field theory, Phys.
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Phys. Rev. D21 (1980) 328-331.

2711. Smalley L.L., Riemann curvature tensor in non-holonomic coordinates and non-Riemann
space-times, Int. J. Theor. Phys. 23 (1984) 1001-1008.
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2749. Socorro, J., Lämmerzahl C., Maćıas A., and Mielke E.W., Multipole-like solutions in metric-
affine gravity, Phys. Lett., A244 (1998) 317-323.
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2824. Tamanini N. and Böhmer C.G., Good and bad tetrads in f(T ) gravity, Phys. Rev. D86
(2012) 044009 (12 pages).

2825. Tapia V. and Ujevic M., Universal field equations for metric-affine theories of gravity,
Class. Quantum Grav. 15 (1998) 3719-3729.

2826. Tartaglia A., Space-time defects as a source of curvature and torsion, Int. J. Mod. Phys.
A20 (2005) 2336.

2827. Tasson J.D., Lorentz violation, gravitomagnetism, and intrinsic spin, Phys. Rev. D86
(2012) 124021 (5 pages).

2828. Tasson J.D., Antimatter, the SME, and gravity, Hyperfine Interactions 213 (2012) 137-146.

2829. Tasson J.D., What do we know about Lorentz invariance? Rep. Prog. Phys. 77 (2014)
062901.

2830. Tchrakian D.H., On the dimensional reduction of gravity with torsion, Class. Quantum
Grav. 4 (1987) L217-L224.

2831. Teixeira A.F., da F., Homogeneous, nonsingular, closed Einstein-Cartan cosmological
model, Phys. Rev. D31 (1985) 2132-2134.

2832. Teyssander P., Linearized R+R2 gravity: a new gauge exact solution, Class. Quantum Grav.
6 (1989) 219-229.

2833. Teyssander P. and Tucker R.W. Gravity, gauges and clocks, Class. Quantum Grav. 13 (1996)
145-152.

2834. Teyssander P., Tucker R.W., and Wang C., On an interpretation of non-Riemannian grav-
itation, Acta Phys. Pol. 29 (1998) 987-994.

2835. Thienel H.-P., BRST approach to translational symmetry and the geometry of flat mani-
folds with torsion, Gen. Relat. Grav. 25 (1993) 483-490.

2836. Thirring W., Gauge theories of gravitation, in: “Facts and prospects of gauge theories”, Ed.
P. Urban (Springer: Wien, 1978) Acta Phys. Austr. Suppl. 29 (1978) 439-462.

2837. Thirring W., Gauge theories of gravitation, in: Lect. Notes Phys. 116 (1980) 272-275.

2838. Thirring W., Classical field theory, a course of mathematical physics 2, 2nd ed. (Springer:
New York, 1986).

2839. Tiemblo A. and Tresguerres R., Conformal symmetry and role of torsion in a Maxwell-
Einstein system, Z. Phys. C51 (1991) 571-580.

2840. Tiemblo A. and Tresguerres R., Invariant foliation of dynamical spacetimes, Gen. Relat.
Grav. 30 (1998) 239-262.

2841. Tiemblo A. and Tresguerres R., Towards a general solution of the Hamiltonian constraints
of General Relativity, Gen. Rel. Grav. 39 (2007) 1839-1859.
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the Poincaré gauge theory of gravity, JCAP 11 (2012) 013.
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2956. Vasilić M., Extra gauge symmetries in Poincaré gauge theory of gravity, Fizika (SFRJ) 18
(1986) 140-144.
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3025. Weyssenhoff J., Über die klassisch–relativistische Behandlung des Spinproblems, in: Max–
Planck–Festschrift (DVB: Berlin, 1958) 155-168.

3026. Weyssenhoff J. and Raabe A., Relativistic dynamics of spin-fluids and spin-particle, Acta
Phys. Pol. 9 (1947) 7-18.

3027. Wheeler J.T., Gravitational gauge theory and the existence of time, J. Phys.: Conf. Ser. 462
(2013) 012059 (8 pages).

3028. Wiesendanger C., Translational gauge invariance and classical gravitodynamics, Class.
Quantum Grav. 12 (1995) 585-603.
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Int. J. Mod. Phys. D8 (1999) 459-479.

3088. Yo H.J. and Nester J.M., Hamiltonian analysis of Poincaré gauge theory: Higher spin
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